Service Manual Dual 1009 F

First Edition E 9 F

Technical Data:

Current:
Line voltage:
Drive:
Power consumption:
Current requirements:
Turntable speeds:
Speed adjustment:
Turntable:
Wow and flutter:
Rumble:
Signal-to-noise ratio:
Tonearm:

Pickup cartridge:
Weight:
Dimensions and mounting cutouts:

* In accordance with DIN 45500

Alternating, 50 or 60 cycle, with appropriate motor pulleys selector for 110 or 220 volts
four-pole, single-phase, induction motor
6.5 watts approximately

50 ma maximum at $220 \mathrm{~V}, 50$ cycle; 90 ma maximum at $117 \mathrm{~V}, 60$ cycle
78,45 and $331 / 3$ r.p.m.
adjustment range of 6% at all three turntable speeds
non-magnetic, 4 lb ., Hi -Fi turntable
Less than $\pm 0.12 \%$
less than 38 dB below signal level *
less than 56 dB below signal level *
balanced on all three axes, extremely low mass, and precision, friction-free suspension
(vertical and horizontal friction bearing friction less than 0.04 gm)
tonearm will accept all cartridges with $1 / 2^{\prime \prime}$ mounting and weighing from $1-13 \mathrm{gms}$.
11 lbs. without packing
see installation instructions

Fig. 1 Tonearm hook-up schematic

Contents Page
Technical data 1
Tonearm hook-up schematic 2
Motor and drive 4
Fine-speed regulation 5
Turntable does not turn when unit plugged in and "start" button operated 5
Turntable does not come up to speed 5
Assembly noise 5
Correct speed obtained only by extreme adjustment of fine-speed regulator 5
Tonearm and suspension 6
Tonearm anti-skating mechanism 7
Needle slides out of groove 7
Tonearm sets down beside arm-rest (68) 7
Horizontal friction too great 7
Arm set-down not free 7
Tonearm movements 8
Tonearm set-down and lift 8
Tonearm does not move onto record when drop cycle actuated 9
Tonearm lowers too quickly onto record when drop cycle actuated 9
Tonearm misses edge of record 9
Tonearm strikes record during change cycle 9
Start cycle 10
Manual operation 10
Stop switching 11
Record drop 11
Shut-off 12
Shut-off and change cycle 12
Tonearm returns to arm rest immediately after being manually placed on record 13
Turntable stops after automatic set-down of tonearm 13
Tonearm returns to its rest after each record 13
Turntable does not turn in manual position 13
Last record keeps repeating 13
Record drops after "stop", then "start" buttons are depressed 13
Records do not drop 13
Noise during change cycle, arm set-down and lift-off 13
No sound. Muting switch remains closed 13
Motor continues to run after tonearm returns to its rest 14
Turntable slows down as record drops 14
Acoustic feedback 14
Replacement parts and exploded view 14-20
Lubrication 20-21

Fig. 2 Motor suspension and turntable drive

Motor and drive

The turntable and change cycle are driven by a four-pole induction motor (113) with an extremely low magnetic field and vibration-free drive.

Motor speed is constant for line variations of $\pm 10 \%$. Motor speed is dependent on, and proportional to line frequency. Adapting for operation at line frequencies of 50 or 60 cycle is accomplished by the use of replaceable motor pulleys (101).

1009 F Motor pulley, 50 cycle Part No. 12X-U 14 Motor pulley, 60 cycle Part No. $12 \mathrm{X}-\mathrm{U} 20$

The motor pulley is secured to the motor shaft by means of a set screw. When changing pulleys, care must be taken that it is set at the correct height.

Fig. 3 Motor field connections,
voltage selector in 110 volt position

Power switch Interrupteur à resorts

Interruptor de muelles

The turntable is driven by means of the drive wheel (145) which, to prevent damage to its friction surfaces, automatically disengages in the "Off" position.

Setting the turntable speed to $331 / 3,45$ and 78 r.p.m. is accomplished by raising or lowering the drive wheel to the corresponding step of the motor pulley.

Similarly, moving the speed change knob (8) causes the switch segment (116) to rotate. The grooves in the switch segment guide the rocker assembly (155) on which the drive wheel is mounted. The drive wheel is thus lifted vertically from the motor pulley and placed in the desired position.

Fine-speed regulation

A fine speed adjustment for all three record speeds $331 / 3,45$ and 78 r.p.m. - permits a variation in turntable speed of 6%.

Turning the adjusting wheel causes the switch segment (116) and with it the rocker assembly (155) to move up and down. This vertical motion changes the position of the idler wheel on the selected step of the motor pulley. The tapered shape of the motor pulley gives an adjustment range of $\pm 3 \%$ from the nominal speed.

Fig. 4 Turntable speeds and drive wheel shift mechanism

Trouble shooting:

Symptom

Cause
a) Current path to motor interrupted
b) Drive wheel (145) not in contact with turntable
c) Motor pulley (101) loose
a) Motor pulley does not correspond to local line frequency
b) Slippage between motor pulley (101), drive wheel (145) and turntable
c) Motor bearing friction

Worn drive wheel

Idler wheel does not contact motor pulley correctly

Remedy
a) Check connection at switch plate and voltage selector
b) Check rocker assembly (155)
c) Tighten motor pulley (101)
a) Change motor pulley
b) Clean friction surface of drive wheel (145) and motor pulley. Change drive wheel, if necessary
c) Clean motor bearings and re-lubricate from lubrication chart

Replace drive wheel (145). Clean friction surfaces of turntable and motor pulley thoroughly with a grease-free cloth. After cleaning, take care not to touch the inner rim or motor pulley.

Correct idler wheel position. Loosen lock nut (149) and rotate idler wheel shaft (147).

The correct position of the idler wheel is in the center of the selector motor pulley step (dial pointer in mid-position)

Re-secure lock nut after adjusting

Fig. 6 Tonearm suspension with anti-skating compensation

Fig. 7 Tonearm suspension (viewed from below)

Tonearm and its suspension

The Hi-Fi tonearm of the Dual 1009 F employs precision ball bearings for both horizontal and vertical movements.

Vertical bearing friction is less than 0.04 gms .
Horizontal bearing friction is less than 0.04 gms.
Especially favorable conditions for pickup are thus provided.
Before setting the tracking pressure corresponding to the cartridge used, set the scale to zero and balance the arm.
The counterbalance weight is such that cartridges weighing from 1 to 13 gms . can be balanced by rotating the counter balance weight (43) on its spindle. Two spindles are available - Part No. $12 \mathrm{~L}-\mathrm{U} 117$ for cartridges weighing between 1 and 8 gms. and Part No. $12 \mathrm{~L}-\mathrm{U} 118$ for cartridges weighing up to 13 gms .
In order to absorb shocks (sharp blows), the counterbalance weight is mounted on the threaded spindle (45) by means of an elastic coupling. This also prevents the counterbalance from turning during ordinary handling.

The cartridge head will accept all cartridges with the international $1 / 2^{\prime \prime}$ standard mount. Tracking force is set by turning the spring housing (53) with its scale divisions and thus tightening or loosening the internal spiral spring. Scale markings are for an adjustment range of $0-5$ gms. with exact settings from 0.5 gms . by $1 / 2 \mathrm{gm}$. steps.

To replace the tonearm assembly and suspension, the following procedure is recommended:

1. Set tracking force scale to " 0 ".
2. Unsolder the tonearm lead.
3. Remove main lever (220) and connecting lever (242).
4. Remove "C" ring and washer of the shut-off slide (189) from the arm segment.
5. Unhook tension spring (260) and loosen screws (252, 255).
6. Place adjusting ring (30) of the "Anti-Skating" mechanism in the " 5.5 " position.
7. Lift off arm segment (254) and remove lift screw (261).

To loosen the nut (253), hold the bearing housing (38), between the base plate (88) and adjusting ring (30), with a suitable tool (such as flat pliers). Carefully take out the tonearm, taking care not to bend the spring lever (58).
To re-install the tonearm, the reverse procedure is followed. Before tightening screws (252, 255), check the tonearm position over the arm rest, so that tonearm lowers onto the rest without binding.
When installed, moving the tonearm in and out, when the adjustment ring (30) is in its " 0 " position, should not cause the tension spring (260) to move. If necessary, the setting can be corrected by means of the tabs (LS) of the spring lever (58).
Similarly, after re-installing the retaining spring for the tonearm leads, care must be taken the arm segment (254) is not impeded by the tonearm leads.
To remoye the tonearm from the bearing frame, unsolder tonearm leads, place spring housing in its zero position, loosen lock-nut (20) and remove set screw (21). Then carefully take tonearm out of the bearing frame.

When re-installing tonearm, make certain that the angle formed in the end of the spiral spring engages the slot in the tonearm bearing housing. Then screw in set screw (21) and tighten lock nut. Check that bearing play, after tightening, is barely noticeable.

Tonarm anti-skating mechanism

The tendency of a tonearm to slide across the record is caused by the tonearm geometry. In the Dual 1009 F, this is virtually eliminated by a precision anti-skating mechanism.

Skating force is caused by friction between record and stylus, and to a less extent by the geometry of the tonearm and the physical properties of the material from which the record is made. Skating force increases with increasing tracking pressure and with decreasing stylus radius.
The resulting skating effect pulls the tonearm towards the center of the record. This occurs not only on the eccentric shut-off grooves but also causes unequal contact with the groove sides. The anti-skating mechanism tends to minimize these effects when playing valuable $\mathrm{Hi}-\mathrm{Fi}$ records.

Rotating the adjustment ring of the anti-skating mechanism moves the spring lever (58) by means of the curved track inside the adjustment ring, and the tension spring (260) transmits the counter-moment to the tonearm.

The optimum adjustment of the anti-skating mechanism is obtained with a needle curvature of 0.7 ± 0.1 mil. The adjusting screw (threaded bushing) is sealed with glyptol after setting. A special Dual-Skate-O-Meter and standard record L 096 are required for re-adjustment, which should only be performed by an authorized service station.

Trouble shooting:

Symptom

Cause
Remedy

Tonearm suspension

Both bearings require a small, barely noticeable, amount of play. Only the left bearing screw is adjustable for the horizontal bearings. The vertical bearing adjustment is made by means of the stop nut (40).

Needle slides out of record groove
a) Tonearm not balanced
b) Tonearm tracking force too light
c) Needle defective
d) Tonearm bearing friction too high
e) Ball missing from shut-off rail (189)

Tonearm lands beside tonearm rest (68)

Horizontal bearing friction too high

Vertical movement of tonearm is
impeded during set down cycle

Fig. 8 Skating and anti-skating force

a) See operating instructions
b) Adjust with spring housing (barrel spring 53) to correct pressure for particular cartridge
c) Replace needle
d) Check tonearm bearing
e) Install ball (33 or 209)
a) Loosen the machine screws $(252,255)$ and rotate the arm segment assembly (254). Then tighten screw (255) and re-check adjustment. Adjustment is correct when tonearm lowers onto arm rest (68) without binding. Finally, tighten screw.
b) Loosen screw (197). Turn the short arm on the long switch arm piece to correct switch arm position. Turn the main cam by hand, and adjust so that when the tonearm lowers onto the arm rest, clearance of about $1 / 64$ " is obtained between latch and segment tabs (LS).
Pickup needle should not be farther from the record than $1 / 4^{\prime \prime}$. Adjust by turning screw (R 8, fig. 11).
a) Check bearing set screw (21) and arm balance
b) Remove and clean lift screw

Fig. 9 Tonearm guide mechanism

Tonearm raising and lowering, as well as horizontal movements, are controlled by main lever (220) and lift screw (261).

Setting the unit for playback of $7^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ records is accomplished by means of the switch, button (73, fig. 12). The set-down point of the tonearm is determined by the eccentric of the arm positioning slide (265) contacting the record size selector lever (262, fig. 13).

Horizontal movement of the tonearm is limited by the arm segment (254) striking the arm positioning slide (265). During the change cycle, the main lever (220) raises the arm positioning slide bringing it within reach of the spring stud (195). On completion of the change cycle (i. e., set-down of the

Tonearm movements

A guide groove located on the underside of the main cam (166) controls automatic lift-off and set-down of the tonearm as the main cam rotates 360°.

Tonarm lift

The tonearm lift permits the tonearm to be safely set down at any desired position of the record (except in the shut-off area).

Pushing the lift handle towards the front, turns the drive washer (245). This, in turn, moves the connecting lever (242), main lever (220), and lift screw (261) to raise the tonearm.

After swinging the tonearm to the desired spot of the record,
the lift handle is lightly tapped towards the rear, to release. Thus freed, connecting lever and the leaf spring (206) of the main lever (220) resume their normal positions and the tonearm lowers. The lowering of the tonearm is delayed by silicone grease on the drive washer.

The set screw (R8) permits needle height to be varied from 0 to $1 / 2^{\prime \prime}$ above the record. Turning to the right increases, to the left decreases, this distance.

Fig. 10 Tonearm lift (tonearm raised)

Fig. 11 Tonearm lift in rest position

Trouble shooting:

Symptom		Cause		Remedy
Tonearm does not move onto record when drop cycle actuated		Damping too great Drive washer dirty		Loosen nut (250). Remove cover washer (249) and drive washer (245). Clean thoroughly. Smear silicone oil AK 300000 evenly on both sides of the drive washer. Reassemble and wipe off excess oil.
Tonearm lowers too quickly onto record when drop cycle is actuated		Too little damping		Loosen nut (250). Remove cover washer (249) and drive washer (245). Clean thoroughly. Smear silicone oil AK 300000 evenly on both sides of the drive washer. Reassemble and wipe off excess oil.
Tonearm misses edge of record	a)	Wrong record size selected	a)	Select correct record size with record size button
	b)	Set-down incorrectly adjusted	b)	Adjust for 7" record by turning eccentric screw R 5 , so that tonearm sets down about $1 / 16^{\prime \prime}$ from edge of record. (Adjustment is made only for 7" records; $10^{\prime \prime}$ and $12^{\prime \prime}$ adjustment being then automatically correct.)
	c)	Record not of standard size	c)	Use standard records
	d)	Tonearm clutch surfaces contaminated	d)	Clean clutch surfaces
Tonearm strikes record during change cycle		Tonearm height incorrectly set		Bend tab (L) towards or away from bearing plate (51). When correctly adjusted, the pickup needle is $1 / 64^{\prime \prime}$ above the dress-up plate (74) when removed from the arm rest.

Start cycle

Operating the start button (75, fig. 12) moves the switch lever (269) towards the main cam, initiating the foliowing sequences:
a) The set screw (213) of the switch lever assembly turns the switch arm (161) mounted on the grooved shaft (199). The rocker assembly (155) moves the drive wheel (145, fig. 2) into contact with the motor pulley and turntable, by means of a tension spring. At the same time, the switch slide (153, fig. 15) actuates the line switch through the switch arm, and the turntable begins to turn.
b) The switch angle (UW) mounted on the switch lever assembly (269) is brought within range of the cam follower lever (168) so that it is pushed into the change position after the rotation of the main cam (fig. 14).

Operating the start button also releases the start lever (202) pulling it towards the main cam by means of the tension spring (268). This causes the coiled spring (201, fig. 15) to bring the shut-off lever (163, fig. 18) within range of the main cam dog. Thus the shut-off lever drives the main cam.

To prevent mis-operation, the start button is locked during the start cycle (i, e. when the main cam is turning). Just before the main cam reaches its zero position (at the end of the change cycle), the start lever is pushed clear of the main cam by means of the start pin (SB) of the main cam. This, in turn, restores the switch lever and start button to their original positions.

After installing and also after moving the record changer, the unit should be operated with the tonearm locked. This will automatically re-adjust the shut-off lever which may have shifted out of position.

Fig. 13 Start position

Manual operation

Placing the switch button in "manual" position initiates the start cycle. The switch lever assembly (269) is pushed towards the main cam and the following sequence is set up:
a) Set screw (213) mounted on the switch lever (269) rotates the switch arm (161) which is mounted on the grooved shaft (199).
b) The rocker assembly (155) then moves the drive wheel (145) into contact with the motor pulley and turntable by means of a tension spring.
c) At the same time, the switch slide (153, fig. 15) actuates the line switch and the turntable begins to rotate.
d) The switch arm latch (233) rests in the support (BG, fig. 14) in the base plate, locking the switch arm in position to keep the drive wheel in contact with the turntable.

On reaching the shut-off groove, the tonearm automatically returns to its rest position and the unit shuts off (see shutoff mechanism). However, should the tonearm be lifted off manually and returned to the tonearm rest, the tabs of the arm segment (254) release the latch (233). The tension spring (235) then returns the switch arm (161) to its initial position, opening the line switch and disengaging the drive wheel.

Stop switching

Placing the switch button in "stop" position moves the switch lever (269) and switch angle (UW) towards the main cam, as in the start cycle, but only half as far. This causes the main cam to push the cam follower lever (168) to the side, into its "stop" position.

Record drop

Records to be placed are stacked on the appropriate record spindle - AW 2 for standard records, AS 9 for 45 r.p.m. records. Records are dropped by the rotation of the main cam (166) whose cam (AK) guides the cam rocker (222), pushing the change actuator stud (182) and releasing a record by means of the automatic spindle.

The design of the main cam is such that a record can only

Fig. 14 Stop position

Fig. 15 Record drop

drop when the tonearm is above the tonearm rest - where it cannot interfere with the largest possible record (12" dia.).

A muting switch (191) is provided to prevent change cycle noises from being picked up by the tonearm cartridge. The switch springs (S) for both channels are actuated by the main cam (166). In the rest position, the muting switch opens.

Fig. 16 Change cycle

Fig. 17 Shut-off position

Fig. 18 Actuating "change" or "shut-off"

Shut-off

Shut-off and change functions are determined by the position of the cam follower lever (168, fig. 17). After the last record of the stack drops, the change lever (176) guides the cam follower lever.

To initiate shut-off, the cam follower lever is brought into position (longer end towards the center of the main cam) by the change lever. After the tonearm has swung over the tonearm rest, the guide post (B, fig. 15) of the main lever (220) contacts the outside of the main cam (166) whose vertical profile causes the tonearm to lower onto its support. The traversing of the tonearm releases the latch (233) from its support (BG). However, the main cam keeps the switch arm (161) in its "play" position until the end of the change cycle. When the main cam returns to its zero position, the switch arm drops into the cut-out in the main cam, the line switch is operated and the drive wheel is disengaged.

Shut-off and change cycle

The dog (M) on the turntable gear (PR) and the shut-off lever (163) actuate both the change cycle at the end of the record as well as the shut-off after the last record of a stack.

As a record is played, the tonearm moves towards the center of the record, dependent on the pitch of the record groove. This motion carries the shut-off lever towards the dog by means of the shut-off slide (189). The eccentric dog pushes the shut-off lever back at each revolution, as long as the tonearm advance is only one record groove (fig. 18a). The shut-off groove with its greater pitch brings the shut-off lever against the dog with greater force (fig. 18b). The shut-off lever then engages and causes the main cam (166) to be driven by the turntable gear out of its zero position (fig. 18c).

Trouble shooting:

Symptom	Cause	Remedy
Tonearm returns to arm rest immediately, after being manually placed on record	Shut-off mechanism shifted out of position during shipping	Whenever unit is moved, before using, push selector button to "start" position
Turntable stops after automatic set-down of the tonearm	Switch arm (161) fails to engage latch (233)	Loosen screw (197) and turn the short arm piece on the long switch-arm piece. Turn the main cam to its zero position and adjust for about $1 / 64^{\prime \prime}$ play between the tabs (L) and the arm segment, when the tonearm drops onto the arm rest
Tonearm returns to its rest position after each record	Engagement between change lever (176) and cam follower lever (168) is too great	Re-adjust change lever (176) so that with record on, and spindle locked, there is about $1 / 64$ " clearance between change lever and the guide post of the cam follower lever (168). With no record loaded, engagement should be about $1 / 32^{\prime \prime}$, to obtain shut-off
Turntable stops in manual position	Switch lever assembly out of adjustment	Re-adjust with set screw (213) so that in manual position, the latch (233) overtravels the support (BG) about $1 / 64^{n}$. Secure adjustment with locknut
Last record keeps repeating	Too little engagement between change lever (176) and cam follower lever (168)	Re-adjust change lever (176) so that with record on and spindle locked, there is about $1 / 64$ " clearance between change lever and guide pin of the cam follower lever (168). With no record loaded, engagement should be about $1 / 32^{\prime \prime}$, to obtain shut-off
Record drops after stop, then start buttons are depressed	Normal operation	
Records do not drop	a) Travel of cam rocker (222) too short	Re-adjust eccentric R 1 so that when the 3 supports of the automatic spindle are completely retracted, further rotation of the main cam causes over-travel of about $1 / 64$ " between the cam and the follower of the cam rocker
	b) Automatic spindle not locked in position	After inserting spindle, rotate to its stop
	c) Spindle is defective	Replace spindle
Noise during change cycle, arm set-down and lift-off	Muting switch mis-adjusted. Clearance between switch spring (S) and switch leaf is too great	Bend switch spring (S) so that with main cam (166) in zero position, there is about $1 / 64$ " clearance between the switch spring (S) and the contact leaves of the muting switch. Spray contacts (e. g. contact 47) with contact cleaner and check muting switch adjustment
No sound. Muting switch remains closed	Too little clearance between switch spring (S) and contact leaves of muting switch	Bend switch spring (S) so that with main cam (166) in zero position, there is about $1 / 64^{\prime \prime}$ clearance between the switch spring (S) and the contact leaves of the muting switch

Motor continues to run after
tonearm returns to its rest

Turntable slows down as record drops

Acoustic feedback

Capacitor (154), $10,000 \mathrm{pF}$, 700 V . shorted

Travel of cam rocker (222) too long
a) Parts of the chassis (e.g. junction board) touching the mounting board
b) Connecting leads pulled too tight

Replace RF interference capacitor with new $10,000 \mathrm{pF}, 700 \mathrm{~V}$. (see also fig. 3)

Re-adjust eccentric R 1 so that when the three supports of the automatic spindle are completely retracted, further rotation of the main cam causes over-travel of about $1 / 64^{\prime \prime}$ between cam and roller of the cam rocker
a) Correct cut-out according to installation instructions
b) Loosen or lengthen leads

Replacement parts

Fig. 19 Exploded view, parts above base plate

Fig. 20 Exploded view, parts below base plate

Ref. No.	Part No.	Description	Number per unit	
176	200754	Change lever $12 \mathrm{G}-\mathrm{U} 12$	1	
177	200167	Bearing post $11 \mathrm{~K}-100$	2	
178	210143	"C" washer 4650/1,5	2	
179	210549	Washer 2,1/5/0,5 St		
180	200641	Compression spring 12F-68		
181	210472	Machine screw Z 3/4d . . .	7	
182	200755	Change actuator stud assembly $12 \mathrm{G}-\mathrm{U} 14$	1	
184	210140	Connector 4281/10 .	4	
185	200756	Switch plate with voltage selector $12 \mathrm{G}-\mathrm{U} 26$	1	
	200563	Switch plate less voltage selector $12 \mathrm{~F}-\mathrm{U} 54$	1	
186	207361	Power switch with voltage selector 12 G-U 77	1	
	207287	Power switch with slide and cover 12F-U52 .	1	
$\begin{aligned} & 187 \\ & 188 \end{aligned}$	210480	Machine screw Z 3/6a	3	
188 189	200587	4-pin connector w/breakaway power cord 12F-U 163	1	
190	201240	Hum shield $12 \mathrm{~K}-250$.	1	
191	207447	Muting switch $12 \mathrm{~K}-\mathrm{U} 345$	1	
192	210472	Machine screw $\mathrm{Z} 3 / 4 \mathrm{~d}$.	7	
193	211614	Solder lug 4103/29.	1	
194	210143	"C" washer 4650/1,5.	2	
195	200686	Spring stud $12 \mathrm{~F}-168$,	1	
196 197	201174	Compression spring $12 \mathrm{~K}-120$	1	
198	210194	Machine screw Grip ring 4693/2	7	
199	200658	Grooved shaft $12 \mathrm{~F}-100$	1	
200	200676	Tension spring $12 \mathrm{~F}-137$.	1	
201	200657	Coiled spring $12 \mathrm{~F}-98$	1	
202	200674	Start lever $12 \mathrm{~F}-135$...	1	
203	200650	Rubber bumper 12F-84 . A $^{\text {a }}$.	1	
204	201185	Main lever bearing support $12 \mathrm{~K}-140$	1	
206	201186	"C" washer $4650 / 2,3$	10 1	
207	200458	Spacer 12B-50	1	
208	210481	Machine screw $\mathrm{Z} 3 / 6 \mathrm{~b}$	1	
209	209358	Steel ball 4000/400 . .	1	
210	210586	Washer 3,2/7/0,5 St . . .	2	
211	210184	Bowed lockwasher 4680/5,2/8	1	
212	210147	"C" washer 4650/4 ${ }^{\text {. }}$	3	
213 214	207286	Set screw 12F-U51	1	
214 215	210360 209974	Hex nut M 3/4b ${ }^{\text {S }}$.	1	
216	210491	Solder lug $4103 / 32$ 2	1	
217	200528	Main lever shaft 12D-212	1	
218	210145	"C" washer 4650/2,3 ${ }^{\text {a }}$	10	
219	209436	Blade connector 4012/40	4	
220	201094	Main lever 12 K - U 325	1	
221	210145	"C" washer 4650/2,3.	10	
222	200513	Cam rocker 12 D - U 60	1	
223	200525	Cam rocker shaft 12 D-102	1	
224	210145	"C" washer 4650/2,3	10	
225	201204	Stand 12 K-180.	1	
	202082	Stand 12R-16	1	
226	210479	Machine screw Z 3/5,5 ${ }^{\text {a }}$, \cdot.	2	
227 228	211434 200687	Stand with phono jacks $12 \mathrm{~K}-\mathrm{U} 102$.	1	
229	201179	Audio cable, spring retainer $12 \mathrm{~F}-172$.	1	
230	201187	Washer $12 \mathrm{~K}-144$.	1	
231	210145	"C" washer 4650/2,3.	10	
232	200527	Guide pin $12 \mathrm{D}-209$.	1	
233	201014	Latch $12 \mathrm{~K}-\mathrm{U} 18$.	1	
234	210145	"C" washer 4 650/2,3	10	
235 236	200103	Tension spring 11 A-10	2	
237	210469	Threaded bushing $12 \mathrm{~F}-298$ Machine screw Z $3 / 3 \mathrm{c}$	3 5	
238	201037	Support bracket with drive washer $12 \mathrm{~K}-\mathrm{U} 70$	1	
239	201196	Torsion spring $12 \mathrm{~K}-162$.	1	
240	212113	Base plate assembly $12 \mathrm{~V}-\mathrm{U} 2$	1	
241	210145	"C" washer 4650/2,3 - .	10	
242 243	201203	Connecting lever $12 \mathrm{~K}-176$. ${ }^{\text {a }}$	1	
244	201042	Bearing support, connecting lever $12 \mathrm{~K}-\mathrm{U} 80$	1	
245	201039	Drive washer 12 K - U 74		
246	201782	Arm lift rod 12 P-U 54.	1	
247	201040	Drive cam assembly $12 \mathrm{~K}-\mathrm{U} 76$	1	
248 249	210353	Hex nut M $2 / 4$, ${ }^{\text {a }}$.	,	
249	201195	Cover washer 12 K - 160	1	

Ref. No.	Part No.	Description	Number per unit
250	210366	Hex nut M 4/2	10
251	210469	Machine screw $\mathrm{Z} 3 / 3 \mathrm{c}$.	5
252	210482	Machine screw Z 3/6c	1
253	200685	Hex nut $12 \mathrm{~F}-156$.	1
254	207462	Arm segment assembly $12 \mathrm{~L}-\mathrm{U} 108$.	1
255	210480	Machine screw Z $3 / 6$.	3
256	201181	Spring post $12 \mathrm{~K}-131$.	1
257	210469	Machine screw Z 3/3 c	5
258	201182	Threaded bushing $12 \mathrm{~K}-132$.	1
259	201184	Positioning washer 12 K-136	1
260	201183	Tension spring $12 \mathrm{~K}-134$.	1
261	201033	Lift screw $12 \mathrm{~K}-\mathrm{U} 60$.	1 -
262	201815	Record size selector lever 12 P-16	1
263	200666	Spacer, short 12F-120	1
264	200453	Tension spring $12 \mathrm{~A}-452$.	1
265	201035	Arm positioning slide $12 \mathrm{~K}-\mathrm{U} 64$.	1
266	201835	Switch button $12 \mathrm{P}-68$. $\mathrm{S}^{\text {a }}$.	2
267	201816 200103		1
269	207284	Switch lever assembly $12 \mathrm{~F}-\mathrm{U} 41^{\text {c }}$.	1
270	200672	Spacer, long $12 \mathrm{~F}-132$.	1
271	207312	Power cord, european 12 F - U 184	1
272	209424	Miniature 5-pin plug 4012/21	1
273	207303	Plug-in output cable $12 \mathrm{~F}-\mathrm{U} 133$.	1
274	207311	Power cord, american $12 \mathrm{~F}-\mathrm{U} 175$.	1
275	209425	Phono plug (yellow) for output cable 4012/22	2
276	209426	Phono plug (red) for output cable 4012/23	2
277	207299	Output cable, phono connector 12 F-U 127	1

* not illustrated

Alteration reserved

Fig. 21 Chassis with turntable removed

Lubrication

All bearings and sliding points have been properly lubricated during assembly. Re-lubrication is normally not necessary for about two years since all important bearings are provided with oil retainers and sintered bearings.

Lubrication should be applied sparingly. It is of primary
importance that no oil or grease should get onto the friction surfaces of the drive wheel, motor pulley or turntable, to avoid slippage. For the same reason, avoid touching these parts.

Use the following lubricants:Fine bearing oil, Shell Clavus 17, for motor bearings and sintered bearings.
\times Adhesive oil, Renotac, for turntable and drive wheel.
O Molycote paste G, where greater pressure or friction occur.
\oplus Silicon oil AK 300000 , for the drive washer of the tonearm lift.
区 Silicone grease.
Δ Thicker, non-gumming oil, Calypsol WIK 700, for other sliding and bearing points.

Fig. 22 Chassis, viewed from below

Dual Gebrüder Steidinger • 7742 St. Georgen/Schwarzwald

