

Service - Manual

Contents

Page	
2	Technical data
3/4	Wiring diagram
5	Audio connection diagram
6	Dual EDS 500 electronic direct drive system
6	Replacement of motor electronics
6	Replacement of motor mechanic
7	Adjustment of nominal speeds
7	Setting 78 rpm nominal speed
7	Stroboscope
7	Pitch control
8	Tonearm and tonearm suspension
8	Removal of tonearm from bearing frame
8	Removal of tonearm compl. with tonearm suspension
8	Removal of spring housing
9	Adjustment of tonearm suspension
9	Antiscating control
9	Cue control
9	Replacement of cue control assembly
10	Tonearm control
10	Adjustment point
10	Muting switch
10	Starting and shut-off
11	Adjustment points: Segment/power switch
11	Pick-up head not parallel
11	Stylus slips out of playing groove
11	Tonearm does not set down or lowers onto record too quickly after
11	Tonearm moves at zero position of dials
11	Motor does not shutt-off when setting down on tonearm rest
11	Acoustic feedback
11-17	Replacement with exploded views
18	Lubrication

Technical data

Current
Line voltage
Drive
Power input
Power consumption

Time from start to rated speed
Platter
Platter speeds
Pitch control

Speed control (monitoring)
Sensitivity of the illuminated strobe
(for 0.1 \% speed deviation)
Total wow and flutter
Rumble
(according to DIN 45 500)
Tonearm

Effective length of tonearm
Offset angle
Tangential tracking error
Tonearm bearing friction
Stylus pressure
Weight

AC 50 to 60 Hz
110 to $125 \mathrm{~V}, 220$ to 240 V
electronically-regulated direct-drive system, Dual EDS 500
approximately 2 watts, Motor at playing operation $<50 \mathrm{~mW}$
$220 \vee 50 \mathrm{~Hz}: \quad$ at start 25 mA
110 V 60 Hz : at play 15 mA
at start 65 mA at play approximately 25 mA
$2-2.5 \mathrm{~s}$ at $331 / 3 \mathrm{rpm}$
non-magnetic, dynamically balanced, detachable $1.3 \mathrm{~kg}, 300 \mathrm{~mm}$ diameter
$331 / 3$ and 45 rpm , electronically adjustable
Separate for both speeds, each adjustable by means of variable resistor,
with calibration scaie; range of regulation: 10%
with illuminated stroboscope for platter speeds $331 / 3$ and 45 rpm .
adjustable to 50 or 60 Hz .
6 division markings per minute at 50 Hz .
7.2 division markings per minute at 60 Hz .
according to DIN 45507 (German Industry Standard) $< \pm 0.06 \%$
Unweighted: $>45 \mathrm{~dB}$
Weighted: $>65 \mathrm{~dB}$
Torsionally rigid tubular aluminum tonearm in low-friction four-point gimbal suspension, tonearm counterbalance with two mechanical anti-resonance filters.
222 mm
25020
$0.16 \% / \mathrm{cm}$
$\begin{array}{ll}\text { vertical } & <0.07 \mathrm{mN} \quad(0.007 \mathrm{~g}) \quad \text { (related to stylus tip) } \\ \text { herizontal }\end{array}$
horizontal $<0.16 \mathrm{mN}(0.016 \mathrm{~g})$
from 0 to $30 \mathrm{mN}(0$ to 3 g$)$ infinitely variable with $1 \mathrm{mN}-(1 / 10 \mathrm{~g})$ calibrations
from 0 to $15 \mathrm{mN}(0$ to 1.5 g$)$, operable from $2.5 \mathrm{mN}(0.25 \mathrm{~g})$ stylus pressure up.
4.6 kg

Dimensions and Cutout Required refer to Installation Instructions.

Transistoren von der Anschlußseite gesehen
Transistors as seen from the connecting side Transistors vus du côté des connexions

IC
von der Bestückungsseite gesehen as seen from the top side
vu du côté éléments

BC 172
BC 238 C

1
2

BD 415

R			2		5	3		6	8	9 10
C	1	3		4		5	6		8	

	12		195	51	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \\ & 17 \\ & \hline \end{aligned}$			18	
14	9	52		51			12	53	13	$\begin{aligned} & 55 \\ & 54 \end{aligned}$

Fig. 2 TA-Anschlußschema / Audio Connection Diagram / Schema de branchement / Esquema de conexion del fono captor
a) mit DIN-Stecker 5-polig / with DIN-plug 5 pin avec fiche DIN 5 pôles / con enchufe DIN de 5 poles
b) mit Cynchstecker / with phono plug avec fiche cynch / con enchufe Cynch

Direct Drive System Dual EDS 500

For repair of the Dual EDS 500 special tools and measuring means are required. Work on the motor or motor electronics system should, therefore, only be carried out by an authorized Dual service station.

Removal

1. Extract unit plug from power line. Lift off platter (4). Bring unit into head position.
2. Remove machine screws (112) and cover of power part (113).
3. Unsolder connecting leads to motor and generator. Open twists of holding angle (150) with pliers. Remove motor electronics (152), screws (151) and holding angle (150).
4. Pull off motor electronics (152) system from motor (18) carefully.
5. Fix replacement motor electronics.

Solder connecting cables (see connection diagram Fig. 4).
6. Slide cover over power part and fix it by means of machine screws (112).
7. With the unit in normal position connect it to power line. Switch on unit and check power consumption on operation:
$220 \mathrm{~V} / 50 \mathrm{~Hz}$ approx. 15 mA
$110 \mathrm{~V} / 60 \mathrm{~Hz}$ approx. 25 mA
Check nominal speeds. If necessary, readjust as described below.

Replacement of Motor Mechanics

1. Extract unit plug from power line. Remove platter (4).
2. With the unit in head position remove machine screws (174) and washers (173). Pull off motor electronics board (172) together with cover (175) carefully from the motor (18).

3. Loosen connection for operating voltage at het plate (109). Unsolder connecting leads to speed fine adjustment (129), rotary switch (5) and the generator. Open twists of holding angle (152) with pliers.
4. Loosen threaded pins (36) and remove platter cone (35). Remove the three screws (148). Lift off motor mechanics (149).
5. Put platter cone (35) on new motor mechanics and fix it. Fix new motor mechanics with the three screws (148). Fix holding angle (150) with screws (151). Insert motor electronics (152) and twist holding pieces.
Solder on resp. plug connecting leads (Fig. 4).
Push cover on power part and fix it with screws (112).
6. With the unit in normal position connect it to the power line Switch on unit and check power consumption when operating:
$220 \mathrm{~V} / 50 \mathrm{~Hz}$ approx. 15 mA
$110 \mathrm{~V} / 60 \mathrm{~Hz}$ approx. 25 mA
Check nominal speeds. If necessary, readjust as described below.

Setting nominal speeds

With knob (7) bring the fine speed control (129/R 19) into center position. With controls (R 8) and (R9) on the motor electronic system adjust nominal speeds. Control (R8) is used for $331 / 3 \mathrm{rpm}, \mathrm{R} 9$ for 45 rpm . Check with strobe disk.

Changeover to 78 rpm nominal speed

Instead of 45 rpm the Dual 604 can be changed to a nominal speed of 78 rpm .
To change the speed bring the fine speed control (129/R 19) in center position using knob (7). Using control R 9 on the motor electronics board (172) adjust for 78 rpm . Check with strobe disk.

Stroboscope

Accurate setting of the platter speeds $331 / 3$ and 45 rpm can be checked during play with the aid of the stroboscope.
When the platter (4) is rotating at exactly $331 / 3$ or 45 rpm the lines of the stroboscope appear to stand still. If the lines move in the direction of rotation of the platter, the platter speed is too high. If the lines move backwards, the platter is rotating more slowly than the nominal speed. Adjustment of platter speeds $331 / 3$ and 45 rpm is carried out separately with the "pitch" controls (7).

Strobe markings are provided on the outer edge of the platter for 50 and 60 Hz line frequencies.
To replace glow lamp (157) remove machine screws (160) and remove strobe cover (156).

It can happen that the stroboscope lines appear to move slightly although the exact speed setting with stroboscope stationary has not been altered. This apparent contradiction is explained by the fact that the electronic central drive motor operates fully independently of line frequency whilst the only relatively accurate line frequency of the AC current supply is used for speed measurement with the light stroboscope. The constantly detectable fluctuations of line frequency by $\pm 2 \%$ according to the information of the electricity supply companies brief frequency fluctuations up to 1% are possible - only effect the stroboscope indication and can cause the lines to "wander" although the platter speed is as constant and absolutely accurate as before.

Pitch Control

Each of the two standard speeds $331 / 3$ and $45 \mathrm{rpm}(78 \mathrm{rpm})$ can be varied by about 10%. The variable speed control (129/ R 19) located in the voltage divider is adjusted by turning the pitch control knob (7). By this the differential amplifier is altered and the motor speed accordingly.

Fig. 6

Fig. 7

Tonearm and Tonearm Suspension

The feather-light, extremely torsion resistant all-metal tonearm is suspended in a gimbal. Suspension is by means of 4 hardened and precision polished steel points which rest in precision ball bearings. Tonearm bearing friction is thus reduced to a minimum.
$\begin{array}{lll}\text { Bearing friction vertical } & 0.07 \mathrm{mN} & (0.007 \mathrm{p}) \\ \text { Bearing friction horizontal } & 0.16 \mathrm{mN} & (0.016 \mathrm{p})\end{array}$
as related to stylus point.
As a result, it ensures most favourable pick-up conditions. Before adjusting the tracking force to suit the built-in pick-up cartridge the tonearm is balanced with the scale set to zero. Coarse adjustment is carried out by moving the weight with the stem (49), the subsequent fine adjustment by turning the weight. The balance weight is designed such that pick-up cartridges having a deadweight of $4.5-10 \mathrm{~g}$ can be balanced.
The tracking force is adjusted by turning the graduated spring housing (60) incorporating a coil spring. The scale has markings for a range of adjustment from 0 to $30 \mathrm{mN}(0$ to 3 p$)$ which permit accurate adjustment of the tracking force. One graduation in the range of $2-15 \mathrm{mN}(0.2-1.5 \mathrm{p})$ corresponds to 1 mN (0.1 p), in the range of $15-30 \mathrm{mN}(1.5-3 \mathrm{p})$ to $2.5 \mathrm{mN}(0.25 \mathrm{p})$.

Fig. 9

Removing the tonearm from the bearing frame

We recommend the following procedure:

1. Clamp unit in the repair stand. Set spring housing scale (60) to zero. Lock tonearm (48). Remove weight (49).
2. Turn unit over and remove the screening sheet (140). Unsolder the tonearm connections on the muting switch (137).
3. Remove safety washer (187), washer (186) and bearing (185). Move positioning bar (219) towards muting switch (137).
4. Unlock tension spring (208), loosen safety washer (215) and remove skating lever (214).
5. Remove safety washer (212) and sliding washer (210) and take shut-off bar (161) from segment.
6. Remove hex nuts (210) and segment (207).
7. Hold tonearm (48). Remove hex nut (203) and tonearm cpl. with tonearm bearing.

Reverse this procedure when reassembling.

Removal of tonearm assembly with tonearm bearing

1. Secure unit in repair jig. Remove weight (49) and undo fixing screw (52). Set tracking force scale (60) to zero.
2. Move unit into head position. Remove screening plate (140) Unsolder tonearm connecting on muting switch (137).
3. Move unit into normal position. Remove both mounting screws - SW 4.5 (54).
For installation proceed in the reverse order.

Replacing spring housing

Remove tonearm (48) from bearing frame (51) as described above. Loosen lock nut (55) and threaded pin (56). Unscrew bearing screw (61). Lift bearing frame (59). Remove spring housing (60). When installing note that the helical spring catches the bearing frame. Slide in washer (60) and tighten bearing screw (61). Reinstall tonearm (48). Set bearing play as described below using threaded pin (56) and lock nut (55).

Adjusting the tonearm bearing

First balance tonearm exactly. Both bearings must have slight, just perceptible play. The horizontal tonearm bearing is correctly adjusted when at anti-skating settings " 0.5 " and being touched it slides in without resistance. The vertical tonearm bearing is correctly adjusted when it swings in after being touched. The play of the horizontal tonearm bearing should be adjusted with threaded pin (33) and mat of the vertical tonearm bearing with threaded pin (56).

Anti-skating Device

To compensate for skating force use the knurled ring (66). The asymmetric cam plate (217) displaces the skating lever (214) from the tonearm pivoting point. The anti-skating force is transmitted to the segment (207) and to the tonearm (48) by tension spring (209).
Optimum adjustment is carried out at the works for styli having a tip radius of $15 \mu \mathrm{~m}$ (conical), 5/6 and $18 / 22 \mu \mathrm{~m}$ (elliptical), and CD 4-cartridges.
Any alteration can only be carried out with the aid of a Dual-Skate-0-Meter and a test record and should only be done by an authorized service station.

Recheck as follows:
Balance tonearm (48) correctly. Set knurled ring (66) to 0 . The tonearm should remain at any desired point within its turning range. The hole of the skating lever (214) should be in alignment with the center line of the tonearm. Adjustment is made by the eccentric pulley (E) which is accessible through the hole in the installation plate (23) between the knurled ring (68) and the tonearm.
Then set knurled ring (66) to " 0.5 ". The tonearm should now smoothly rotate from the platter center to its rest (71).

Cue Control

By moving the lever (194) forward (\boldsymbol{V}) lift cam (197) rotates. The slide bar (219) connected to it transmits this movement to the lift pin (206) (via the compensating cam which then raises the tonearm. As a result, the cue control permits setdown of the tonearm at any desired point.
The lever (194) is released by moving the cue control lever rearwards (\mathbf{Z}). As a result of the action of compression spring (204) the lift pin (201) is brought back to its normal position and the tonearm lowered slowly. Lowering of the tonearm is damped by silicone oil in the lift tube.

Adjustment Point

The lift height may be varied by turning the sleeve (202). The distance between the record and the needle is to be 5-7 mm with the tonearm (48) having a height play of 1.2 mm . Make adjustment by means of set screw (57).

Replacement of Cue Control Plate

Replace cue control plate (201) as follows:

1. Clamp unit in the repair stand and lock tonearm. Turn unit over.
2. Remove safety washer (187), washer (186) and bearing (185). Lift positioning bar (219) and move towards muting switch (137).
3. Unlock tension spring (208). Loosen safety washer (215) and lift skating lever (214). Remove safety washer (213) and sliding bar (212). Lift shut-off bar (161) from segment (207).
4. Remove hex nuts (211) and segment (207).

Fig. 10

Fig. 11

Fig. 12

5. Remove machine screws (205). Hold tonearm bearing. Unscrew hex nut (203) and remove lift plate (201).
6. Secure tonearm with hex nut (203) against falling out.

Reverse this procedure when reassembling.

Tonearm set-down mechanism

When turning knob (68) to "V" position the recesses of slide bar (219) are positioned in the area of the spring pin (F) of segment (207).
When moving slowly the tonearm with tonearm cue control in I position the spring pin (F) is arrested in the recesses of slide bar (217) thus designing the set-down point of stylus for 30 cm and 17 cm records.
To enable set-down in the catching range of the arresting point of the appropriate setdown position, the tonearm set-down mechanism can be disengaged with the knob (68) in "-" position.

Adjustment Points

a) Balance tonearm (48) exactly. Bring knob (68) into " " position. Let tonearm catch in catch point for tonearm setdown point. Check catch force by means of a spring balance. It should read 10-20 p. The force is adjustable by means of a threaded pin.
b) The tonearm set-down point can be adjusted by turning set screw (42). Adjustment can be made for $17-\mathrm{cm}$ - and $30-\mathrm{cm}$ records.

Short Circuiter

To prevent disturbing noises during automatic operation of the tonearm the unit is fitted with a short circuiter. Control of the switch springs for both channels is effected by the camwheel. With the unit in neutral state the short circuit of the pick-up leads is eliminated.

Adjustment

In zero position of the cam there should be a clearance of approximately 0.5 mm between the contacts of the short circuiter. This clearance should be adjusted by bending the short circuit contact. The contacts should be sprayed with a suitable cleaning agent.

Starting and shut off

Swinging in the tonearm (48) rotates the segment (207) thus actuating the power switch (116) and shift arm (146) and starting motor (149) and platter (4) rotating.
The shut-off cycle after playing a record is initated by the dog (M) of the platter (4) and shut-off lever (A).

The shut-off lever (A) is guided onto the dog by the movement of the tonearm when playing the record with the aid of the shutoff bar (161) proportionate to the groove lead (Fig. 13 a). The eccentrically-mounted dog forces the shut-off lever (A) back with each revolution as long as the advance of the tonearm only amounts to the width of one groove.
The cam wheel (37) is thus guided to the pinion range of the platter. The tonearm is lifted and the resetting bar (188) transports it back to the rest. The power switch is operated, thus switching the unit off.

Fig. 13

Fig. 14

Fig. 15

Adjustment Points

1. Segment
a) When fixing the segment (207) mowe surt here is a play between the segment (207) and the switch lever (144) of 0.5 mm
b) The shut-off point may be varied with the eccentric (E) mounted on the segment (Fig, 16).
2. Power Switch

Swing in tonearm (48) slide (117) of power switch (116) should have a play of $0,2-0,5 \mathrm{~mm}$. Make adjustments by bending the switch lever (144).

Defect

Tonearm head not parallel to platter

Cause

Seat of tonearm head on the tonearm tube has changed during transit.

Remedy

Remove platter. Insert screwdriver through the hole in the chassis mounting plate and loosen screw at tonearm head. Align tonearm head and retighten screw (Fig. 18).

Fig. 16

Fig. 17

Fig. 18

Remedy

a) Balance tonearm
b) Adjust tracking force to the value stated by the cartridge manufacturer
c) Correct anti-skating setting
d) Renew stylus
e) Check tonearm bearings and readjust if necessary
f) Renew steel ball (136)

Defect

Tonearm does not set down on record or lowers too quickly when operating the cue control lever (197).

With tracking force and anti-skating in 0 position tonearm moves outwards or inwards.

Motor does not switch off when tonearm sets down on rest.

Acoustic feedback

Cause

Excessive or insufficient damping as a result of contamination of the silicone oil in the lift tube.
a) Anti-skating device maladjusted
b) Tight tonearm leads cause a torque

Capacitor type suppressor (110) in power switch is defective (short-circuit).
a) Chassis components (e.g. connecting leads) rubbing on board cut out.
b) Connecting leads fixed too strongly

Replacement part

Pos.	Part.No.	Qty.	Description
1	220213	1	Centering disc
2	214054	1	Washer
3	244460	1	Platter sandwich compl.
4	244461	1	Platter compl. with mat
5	238034	1	Rotary switch compl. -
6	242184	1	Rotary knob
7	242189	1	Rotary knob
8	242181	3	Threaded pin M 3×3
9	244462	1	Pitch cover
10	200444	3	Spring washer
11	239414	3	Shipping screw compl.
17	232975	3	Spring mount compl. (Transformer side/Tonearm side back)
	237228	1	Spring mount compl. (Tonearm side front)
18	230529	4	Threaded piece
19	230523	3	Compression spring (Transformer/Tonearm side back)
	236712	1	Compression spring (Tonearm side front)
20	200723	4	Rubber damping
21	200722	4	Steel cup
25	244463	1	Tonearm head compl.
26	237223	1	Contact plate compl.
27	234611	1	Handle
28	210182	1	Lock washer 4.2/8
29	210630	1	Washer 4.2/8/0.5
30	210197	1	"C" clip
31	236242	1	Holder TK 24
32	234635	2	Lock nut
33	230063	1	Threaded pin
34	237230	1	Frame compl.
35	242192	1	Platter cone compl.
36	242191	3	Threaded pin M 3×3
37	244464	1	Cam wheel cpl.
38	210146	4	Lock washer 3.2
39	242143	1	Tension spring
40	210145	5	Lock washer 2.3
41	242141	1	Contact lever
42	234781	1	Adjustment screw
43	234818	1	Pin screw
44	244465	1	Mounting plate
48	244466	1	Tonearm compl.
49	244467	1	Weight compl.
50	239741	1	Pointer
51	244468	1	Bearing frame compl.
52	236051	1	Clamp screw
53	244244	2	Washer 3.5/6/1.5
54	244103	2	Hexagon sheet screw $\quad 2.9 \times 6.5$

Pos.	Part.No.	Qty.	Description
55	234635	2	Stop nut
56	234634	1	Threaded pin
57	242131	1	Adjustment screw
59	237234	1	Bearing compl.
60	236907	1	Spring housing compl.
61	234637	1	Bearing screw
65	244470	1	Cover back compl.
66	236081	1	Ring
67	200444	2	Spring washer
68	240151	1	Rotary knob
69	244471	1	Cover front compl.
70	200444	3	Spring washer
71	244472	1	Support compl.
72	210362	1	Hexnut BM 3
101	210517	2	Machine screw M4×10
102	210648	2	Washer 4.2/14/1
103	242283	2	Bushing
104	209939	2	Sleeve
105	210480	4	Machine screw AM 3 6
106	237548	2	Sleeving with strain relief
107	228209	1	Sleeve
108	242284	1	Insulating plate
109	244473	1	Power plate compl.
110	242478	1	Fuse T0,063 A
C 51	225322	1	Foil $\quad 68 \mathrm{nF} / 400 \mathrm{~V} / 10 \%$
C 52	224886	1	Paper $\quad 67 \mathrm{nF} / 250 \mathrm{~V} / 20 \%$
C 53	222760	2	Ceramic $20 \mathrm{nF} / 50 \mathrm{~V}$
C 54	222760	2	Ceramic $20 \mathrm{nF} / 50 \mathrm{~V}$
C 55	226686	1	Elyt $1000 \mu \mathrm{~F} / 40 \mathrm{~V}$
D 51	225247	1	BY 183/300
D 52	227344	4	1 N 4001
D 53	227344	4	1 N 4001
D 54	227344	4	1 N 4001
D 55	227344	4	1 N 4001
R 51	232402	1	Carbon $\quad 22 \mathrm{k} \Omega / 0,25 \mathrm{~W} / 5 \%$
R 52	232401	1	Carbon $\quad 12 \mathrm{k} \Omega / 0.125 \mathrm{~W} / 5 \%$
111	244474	1	Power transformer compl.
112	210283	2	Fillister sheet screw
113	244475	1	Power part compl.
116	242581	1	Power switch compl.
117	236335	1	Slide
118	200444	1	Spring washer
119	233012	1	Switch plate compl.
120	219200	1	Snab spring
121	239732	1	Tension spring
122	230148	1	Switch angle

Fig. 19 Exploded view 1

(44)

Pos.	Part.No.	Qty.	Description	
123	241883	1	Capacitor	$10 \mathrm{nF} / 250 \mathrm{~V}$
124	242102	1	Cap	
125	210498	1	Machine screw	M 3×28
126	231079	1	Cable holder compl.	
128	237782	1	Nut for potentiometer	
129	238073	1	Fine speed control (R)	
130	242195	1	Switch unit	
131	210587	1	Washer	3.2/7/1
132	210362	1	Hex nut	BM 3
133	242187	1	Switch member	
134	210469	1	Machine screw	AM 3×3
136	242182	1	Contact arm	
137	242612	1	Short circuiter compl.	
138	239806	1	Base sheet	
139	210486	1	Machine screw	AM 3×8
140	239808	1	Screening sheet	
141	210146	1	Lock washer	3.2
142	210630	1	Washer	4.2/8/0.5
143	234759	1	Screw pin	
144	242142	1	Switch lever	
145	242144	1	Spring	
146	242145	1	Silicone tubing	
147	210630	1	Washer	3.2
148	210511	3	Machine screw	AM 4×4
149	244476	1	Motor mechanics compl.	
150	242233	1	Stop angle	
151	210511	1	Machine screw	AM 4×4
152	244477	1	Motor electronics compl.	
153	242160	1	Stroboscope trimplate	
154	210469	1	Machine screw	AM 3×3
155	242158	1	Angle reflector	2
156	237677	1	Bottom part of housing	
157	225321	1	Lamp	
158	242201	1	Angle reflector	1
159	237679	1	Stroboscope cover	
160	210472	2	Machine screw	AM 3×4
161	242179	1	Stop lever	
162	209357	1	Ball	$\phi 3.2$
163	232104	1	Ball bed	
164	210472	1	Machine screw	AM 3×4
165	234782	1	Lock washer	
166	210713	1	Washer	9.1/15/1
167	210151	1	Lock washer	7
168	242180	1	Plate	
169	210145	1	Lock washer	
170	210366	1	Hex nut	M 4
171	242175	1	Screw pin	
172	210607	1	Washer	3.2/10/0.5
173	233710	1	Tension spring	
174	242171	1	Lever	
175	210182	1	Lock washer	
176	210630	1	Washer	4.2/3/0.5
177	210146	4	Lock washer	3.2
178	242164	1	Rotary lever	
179	203477	1	Washer	2.7/8/1
180	210353	1	Hex nut	M 2
185	234784	1	Bearing	
186	210586	1	Washer	3.2
187	210145	5	Lock washer	2.3
188	242165	1	Rail	
189	242166	1	Washer	3.2/14/0.5
190	243001	1	Compression spring	
191	210145	5	Lock washer	2.3
192	242167	1	Tension spring	
193	237543	1	Rubber sleeve	
194	239547	1	Handle	
195	242161	1	Lift rail	
196	234778	1	Spring	
197	234777	1	Shift curve	
198	232545	1	Spring	
199	234776	1	Bearing lever	
200	210469	1	Machine screw	AM 3×3
201	244482	1	Lift plate compl.	
202	243125	1	Adjustment bush	
203	210366	1	Hex nut	

Lubrication

All bearings and friction points are adequately lubricated by the manufacturer. Replenishment of oil and grease is only necessary after approximately 2 years of normal use of the turntable as the most important bearing points (motor bearings) have sintered metal bushes.
Bearing points and friction faces should be lubricated sparingly rather than generously.
When using different lubricants, chemical decomposition can often occur. To prevent failure of lubrication we recommend using the original lubricants stated below.

Fig. 21

Fig. 22

