Technical Data

Currant

Line voltage
Drive
Power input
Power consumption

Time from start to rated speed
Platter
Platter speed
Pitch control
Speed control (monitoring) Sensitivity of the illuminated strobe (for 0.1 \% speed deviation)
Total wow and flutter
(according to DIN 45 507)
Rumble
(according to DIN 45 500)
Tonearm
Effective length of tonearm
Offset angle
Tangential tracking error
Tonearm bearing friction
(related to stylus tip)
Stylus pressure

Cartridges

AC 50 to 60 Hz
110 to $125 \mathrm{~V}, 220$ to 240 V
electronically-controlled direct-drive system, Dual EDS 500
Motor at playing operation approximately 2 watts $<50 \mathrm{~mW}$
220 V 50 Hz : at start 35 mA
110 V 60 Hz : at start 65 mA
at play 15 mA at play approximately 25 mA
$2 \cdot 2.5 \mathrm{~s}$ at $331 / 3 \mathrm{rpm}$
non-magnetic, $1.4 \mathrm{~kg}, 304 \mathrm{~mm}$ diameter
$331 / 3$ and 45 rpm , electronically adjustable
Separate for both speeds, each adjustable by means of variable resistor, with calibration scale; range of regulation: 10 \%
with illuminated stroboscope for platter speeds $331 / 3$ and 45 rpm , adjustable to 50 or 60 Hz
6 division markings per minute at 50 Hz ,
7.2 division markings per minute at 60 Hz ,
(German Industry Standard) $\pm 0.05 \%$
WRMS
± 0.03 \%
Unweighted: 50 dB
Weighted: $\quad 75 \mathrm{~dB}$
Torsionally rigid tubular aluminum tonearm in low-friction four-point gimbal suspension 221 mm
2404^{\prime}
$0.160 / \mathrm{cm}$
vertical $\quad<0.07 \mathrm{mN}(0.007 \mathrm{~g})$
horizontal $<0.15 \mathrm{mN}(0.015 \mathrm{~g})$
from 0 to $30 \mathrm{mN}(0$ to 3 g$)$ infinitely variable with $1 \mathrm{mN} \cdot(1 / 10 \mathrm{~g})$ calibrations from 0 to 15 mN (0 to 1.5 g) operable from $2.5 \mathrm{mN}(0.25 \mathrm{~g})$ stylus pressure up.
with $1 / 2$ inch screw-type attachment. These can be fitted with the special accessories no. 262186 which can be obteined from trade dealers.

Weight
ca. 5.4 kg Dimensions and Cutout Required refer to Installation Instructions.
Dual Gebrüder Steidinger • 7742 St. Georgen/Schwarzwald

Contents

Page	
1	Technical data
2	Audio connection diagram
3	Wiring diagram
4	Dual EDS 500 electronic direct drive system
4	Replacement of motor electronics
4	Replacement of motor mechanic
5	Adjustment of nominal speeds
5	Setting 78 rpm nominal speed
5	Stroboscope
5	Pitch control
5	Tonearm and tonearm suspension
6	Removal of tonearm or spring housing
6	Removal of tonearm compl. with tonearm suspension
6	Adjustment of tonearm suspension
6	Fitting a $1 / 2$ inch cartrige
6	Antiscating control
7	Cue control
7	Replacement of cue control assembly
7	Tonearm control
7	Adjustment point
7	Muting switch
8	Starting and shut-off
8	Adjustment points: Segment
8	Power switch
8-12	Replacement with exploded views
12	Lubrication

Fig. 1 Audio Connection Diagram

Fig. 4

Fig. 5

Direct Drive System Dual EDS 500

For repair of the Dual EDS 500 special tools and measuring means are required. Work on the motor or motor electronics system should, therefore, only be carried out by an authorized Dual service station.

Replacement of motor electronics

1. Extract unit plug from power line. Lift off platter 4 . Bring unit into head position.
2. Remove machine screws $\mathbf{1 1 2}$ and cover of power part
3. Unsolder connecting leads to motor and generator. Open twists of holding angle 150 with pliers. Remove motor electronics 152, screws 151 and holding angle 150.
4. Pull off motor electronics $\mathbf{1 5 2}$ system from motor $\mathbf{1 8}$ carefully.
5. Fix replacement motor electronics.

Solder connecting cables (see connection diagram Fig. 5.
6. Slide cover over power part and fix it by means of machine screws 112.
7. With the unit in normal position connect it to power line. Switch on unit and check power consumption on operation:
$220 \mathrm{~V} / 50 \mathrm{~Hz}$ approx. 15 mA
$110 \mathrm{~V} / 60 \mathrm{~Hz}$ approx. 25 mA
Check nominal speeds. If necessary, readjust as described below.

Replacement of motor mechanics

1. Extract unit plug from power line. Remove platter $\mathbf{4}$
2. With the unit in head position remove machine screws 174 and washers 173. Pull off motor electronics board 172 together with cover 175 carefully from the motor 18
3. Loosen connection for operating voltage at het plate 109. Unsolder connecting leads to speed fine adjustment 129 rotary switch 5 and the generator. Open twists of holding angle 152 with pliers.
4. Loosen threaded pins 13 and remove platter cone 12 Remove the three screws $\mathbf{1 4 8}$. Lift off motor mechanics 149
5. Put platter cone 12 on new motor mechanics and tix it. Fix new motor mechanics with the three screws 148 . Fix holding angle 150 with screws 151 insert motor electronics 152 and twist holding pieces.
Solder on resp. plug connecting leads (fig, 5).
Push cover on power part and fix it with screws 112
6. With the unit in normal position connect it to the power line Switch on unit and check power consumption when operating
$220 \mathrm{~V} / 50 \mathrm{~Hz}$ approx. 15 mA
$110 \mathrm{~V} / 60 \mathrm{~Hz}$ approx. 25 mA
Check nominal speeds. If necessary, readjust as described below

Setting nominal speeds

With knob 7 bring the fine speed control 129/R 19 into center position. With controls R 8 and R 9 on the motor electronic system adjust nominal speeds. Control R 8 is used for $331 / 3$ $\mathrm{rpm}, \mathbf{R} 9$ for 45 rpm . Check with strobe disk.

Changeover to 78 rpm nominal speed

Instead of 45 rpm the Dual 606 can be changed to a nominal speed of 78 rpm .
To change the speed bring the fine speed control 129/R 19 in center position using knob 7 Using control R 9 on the mator electronics board $\mathbf{1 5 2}$ adjust for 78 rpm . Check with strobe disk.

Stroboscope

Accurate setting of the platter speeds $331 / 3$ and 45 rpm can be checked during play with the aid of the stroboscope.
When the platter 4 is rotating at exactly $331 / 3$ or 45 rpm the lines of the stroboscope appear to stand still. If the lines move in the direction of rotation of the platter, the platter speed is too high. If the lines move backwards, the platter is rotating more slowly than the nominal speed. Adjustment of platter speeds 33 $1 / 3$ and 45 rpm is carried out separately with the "pitch" controls 7.

Strobe markings are provided on the outer edge of the platter for 50 and 60 Hz line frequencies.
To replace glow lamp 157 remove machine screws 160 and remove strobe cover.
It can happen that the stroboscope lines appear to move slightly although the exact speed setting with stroboscope stationary has not been altered. This apparent contradiction is explained by the fact that the electronic central drive motor operates fully independently of line frequency whilst the only relatively accurate line frequency of the AC current supply is used for speed measurement with the light stroboscope. The constantly detectable fluctuations of line frequency by $\pm 2 \%$ according to the information of the electricity supply companies brief frequency fluctuations up to 1% are possible - only effect the stroboscope indication and can cause the lines to "wander" although the platter speed is as constant and absolutely accurate as before.

Pitch Control

Each of the two standard speeds $33 \mathrm{~T} / 3$ and $45 \mathrm{rpm}(78 \mathrm{rpm} /$ can be varied by about 10%. The variable speed control 129/R 19 located in the voltage divider is adjusted by turning the pitch control knob 7 By this the differential amplifier is altered and the motor speed accordingly.

Fig. 7

Tonearm and Tonearm Suspension

Th efeather-light, extremely torsion resistant all-metal tonearm is suspended in a gimbal. Suspension is by means of 4 hardened and precision polished steel points which rest in precision ball bearings. Tonearm bearing friction is thus reduced to a minimum.
Bearing friction vertical $\quad 0.07 \mathrm{mN} \quad(0.007 \mathrm{p})$ Bearing friction horizontal $0.16 \mathrm{mN} \quad(0.016 \mathrm{p})$
as related to stylus point.
As a result, it ensures most favourable pick-up conditions. Before adjusting the tracking force to suit the built-in pick-up cartridge the tonearm is balanced with the scale set to zero; Coarse adjustment is carried out by moving the weight with the stem 49, the subsequent fine adjustment by turning the weight.
The tracking force is adjusted by turning the graduated spring housing 58 incorporating a coil spring. The Rotary knob 54 has markings for a range of adjustment from 0 to $30 \mathrm{mN}(0$ to 3 p$)$ which permit accurate adjustment of the tracking force. One graduation in the range of $2-15 \mathrm{mN}(0.2-1.5 \mathrm{p})$ corresponds to $1 \mathrm{mN}(0.1 \mathrm{p})$, in the range of $15-30 \mathrm{mN}(1.5-3 \mathrm{p})$ to $2.5 \mathrm{mN}(0.25 \mathrm{p})$.

Fig. 9

Fig. 10

To Remove the tonearm or the spring housing

1. Secure the unit in a repair stand, Turn the rotary turn switch 51 to the zero position, Lock the tonearm 48. Remove the counterweight 49
2. Turn the unit over Remove the screening sheet 140 and solder off the tonearm connections at the short circuiter 137 Turn the unit the right way up.
3. Remove the fillister head screw 55. Remove the rotary turn switch 54 and the washer 53
4. Loosen the nut 50 and the grub screw 51. Draw the tonearm 48 complete with bearing 57 from the bearing race 52 The spring housing 52 or the tonearm $\mathbf{4 8}$ may now be changed.
Reassembly involves the reverse procedure.

Removing the tonearm from the bearing frame

We recommend the following procedure:

1. Clamp unit in the repair stand. Set rotary knob 54 to zero Lock tonearm 48. Remove weight 49.
2. Turn unit over and remove the screening sheet 140. Unsolder the tonearm connections on the muting switch 137
3. Remove safety washer 187 , washer 186 and bearing 185. Move positioning bar 219 towards muting switch 137.
4. Unlock tension spring 203, loosen safety washer 217 and remove skating lever 216,
5. Remove safety washer 214 and sliding washer 213 and take shut-off bar 161 from segment.
6. Slacken hex nuts $\mathbf{2 1 0}$ and the screw 212. Remove the bearing 211 and segment 207
7. Hold tonearm 48. Remove the machine screw 35 and tonearm cpl. with tonearm bearing.
Reassembly of the tonearm involves the reverse procedure. Take care that the grub screw 33 is correctly seated in the bearing when fastening the frame 34.

Adjusting the tonearm bearing

First balance tonearm exactly. Both bearings must have slight, just perceptible play. The horizontal tonearm bearing is correctly adjusted when at anti-skating settings " 0.5 ' and being touched it slides in without resistance. The vertical tonearm bearing is correctly adjusted when it swings in after being touched. The play of the horizontal tonearm bearing should be adjusted with threaded pin 33 and mat of the vertical tonearm bearing with threaded pin 51.

Fitting a $1 / 2$ inch cartridge

If a cartridge with $1 / 2$ inch standard mount is to be fitted, the conversion kit 31 Number 262186 is necessary. The proper method of fitting is shown in fig. 8 .
Also the decorative cover should be removed from the counterweight 49 and should be fitted with the compensatory weight to be found in the conversion kit 31.
Any alteration can only be carried out with the aid of a Dual-Skate-0-Meter and a test record and should only be done by an authorized service station.

Anti-skating Device

To compensate for skating force use the knurled ring 68. The asymmetric cam plate displaces the skating lever 216 from the tonearm pivoting point. The anti-skating force is transmitted to the segment 207 and to the tonearm 48 by tension spring 208. Optimum adjustment is carried out at the works for styli having a tip radius of $15 \mu \mathrm{~m}$ (conical), $5 / 6$ and $18 / 22 \mu \mathrm{~m}$ (elliptical). Any alteration can only be carried out with the aid of a Dual-Skate-0-Meter and a test record and should only be done by an authorized service station.

Cue Control

By moving the lever 194 forward (V) lift cam 197 rotates. The slide bar 219 connected to it transmits this movement to the lift pin 206 (via the compensating cam which then raises the tonearm. As a result, the cue contral permits setdown of the tonearm at any desird point.
The lever 194 is released by moving the cue control lever rear: wards (\mathbf{Z}) As a result of the action of compression spring 204 the lift pin 201 is brought back to its normal position and the tonearm lowered slowly Lowering of the tonearm is damped by silicorie ofl in the lift tube.

Adjustment Point

The lift height may be varied by turning the sleeve 202. The distance between the record and the needle is to be 5.7 mm .

Replacement of Cue Control Plate

Replace cue control plate 201 as follows:

1. Clamp unit in the repair stand and lock tonearm. Turn unit over
2. Remove safety washer 187. washer $\mathbf{1 8 6}$ and bearing $\mathbf{1 8 5}$. Lift positioning bar 219 and move to wards muting switch 137.
3. Unlock tension spring 208. Loosen safety washer 217 and lift skating lever 216. Remove safety washer 214 and sliding bar 213. Lift shut-off bar 161 from segment 207
4. Remove hex nuts $\mathbf{2 1 0}$ and the screw 212, and the counter bearing 211 and segment 207.
5 Remove machine screws 205 and remove lift plate 201.
Reverse this procedure when reassembling.

Tonearm set-down mechanism

When turning knob 62 to " V " position the recesses of slide bar 219 are positioned in the area of the spring pin F of segment 207
When moving slowly the tonearm with tonearm cue control in V position the spring pin F is arrested in the recesses of slide bar 217 thus designing the set-down point of stylus for 30 cm and 17 cm records.
To enable set-down in the catching range of the arresting point of the appropriate setdown position, the tonearm set-down mechanism can be disengaged with the knob 62 in "-" position.

Adjustment Points

a) Balance tonearm 48 exactly. Bring knob 62 into " V " position Let tonearm catch in catch point for tonearm setdown point. Check catch force by means of a spring balance, It should read $10-20 \mathrm{p}$. The force is adjustable by means of a threaded pin.
b) The tonearm set-down point can be adjusted by turning set screw 45. Adjustment can be made for $17 \cdot \mathrm{~cm}-$ and $30 \cdot \mathrm{~cm}$ records.

Short Circuiter

To prevent disturbing noises during automatic operation of the tonearm the unit is fitted with a short circuiter. Control of the switch springs for both channels is effected by the camwheel. With the unit in neutral state the short circuit of the pick-up leads is eliminated.

Adjustment

In zero position of the cam there should be a clearance of approximately 0.5 mm between the contacts of the short circuiter. This clearance should be adjusted by bending the short circuit contact. The contacts should be sprayed with a suitable cleaning agent.

Fig. 11

Fig. 12

Fig. 13

Starting and shut off

Swinging in the tonearm 48 rotates the segment 207 thus actuating the power switch 116 and shift arm 146 and starting motor 149 and platter 4 rotating
The shut-off cycle after playing a record is initated by the dog \mathbf{M} of the platter $\mathbf{4}$ and shut-off lever \mathbf{A}
The shut-off lever \mathbf{A} is guided onto the dog by the movement of the tonearm when playing the record with the aid of the shut off bar 161 proportionate to the groove lead. The eccentrically. mounted dog forces the shut-off lever A back with each revolution as long as the advance of the tonearm only amounts to the width of one groove.
The cam wheel 37 is thus guided to the pinion range of the platter. The tonearm is lifted and the resetting bar 188 transports it back to the rest. The power switch is operated, thus switching the unit off.

Adjustment Points

Power Switch

Swing in tonearm 48 slide 117 of power switch 116 should have a play of $0.2-0.5 \mathrm{~mm}$. Make adjustments by bending the switch lever 144

Fig. 15

Replacement parts

Pos.	Part. No.	Qty	Description			
1	220213	1	Centering piece			
2	214056	1	Washer			
3	263254	1	Platter mat cpl.			
4	263256	1	Platter cpl.			
5	238034	1	Switch			
6	260335	1	Rotary knob			
7	260336	1	Rotary knob			
8	242191	3	Grub screw			
9	263257	1	Pitch cover			
10	200444	8	Spring washer			
11	239414	3	Shipping screw cpl.			
12	242192	1	Platter cone cpl.			
13	242191	3	Grub screw			
14	262634	1	Washer			
17	232975	3	Spring mount cpl.			
18	237228	1	Spring mount cpl.			
19	230529	9	Threaded piece			
19	230523	3	Compression spring			
	236712	1	Compression spring (Tonearm side side front)			
20	200723	4	Rubber damping			
21	200722	4	Steel cup			
25	263259	1	Tonearm head cpl.			
26	261929	1	Tonearm lead cpl.			
31	262186	1	1/2 inch conversion kit cpl			
32	249383	1	Counter nut			
33	262695	1	Counter nut			
34	234651	1	Grub screw			
35	263081	1	Frame cpl.			
37	242677	1	Machine screw			
38	210146	1	Cam wheel			
39	242143	1	Lock washer	Tension spring		
40	210145	5	Lock washer			

Fig. 14

Segment

a) When fixing the segment 207 mowe surt here is a play between the segment 207 and the switch lever 144 of 0.5 mm .
b) The shut-off point may be varied with the eccentric \mathbf{E} mounted on the segment.

Fig. 16

Pos.	Part. No.	Qty	Description	
41	242141	1	Contact lever	
44	263339	1	Mounting plate	
45	234781	1	Adjustment	
46	234818	1	Pin screw	
47	200428	1	Clamping screw	
48	264020	1	Tonearm cpl	
49	263263	1	Weight cpl	
	263328	1	Weight cpl. (UAP)	
50	246884	1	Counter nut	
51	234634	1	Grub screw	
52	263329	1	Bearing frame cpl.	
53	261798	1	Washer	
54	248989	1	Rotary knob	
55	249097	1	Raised counter sunk head	
56	236069	1	Screw	Machine screw
57	263340	1	Bearing cpl.	
58	263339	1	Spring housing cpl	
59	248979	1	Lifting plate	
60	210597	1	Washer	
61	262294	1	Hexagon sheet screw	B 2.9×6.5
62	260334	1	Rotary knob	
63	263341	1	Rear covering cpl.	
65	260328	1	Stroboscope prism	
66	263342	1	Front covering cpl.	
67	263334	1	Tonearm rest cpl.	
68	260320	1	Cam disc	
69	242298	1	Washer	
70	228113	1	Washer	
71	210146	3	Lock washer	
72	200444	4	Spring washer	

(44)

Alterations reserved!

Fig. 19

Lubrication

All bearings and friction points are adequately lubricated by the manufacturer. Replenishment of oil and grease is only necessary after approximately 2 years of normal use of the turntable as the most important bearing points (motor bearings) have sintered metal bushes.
Bearing points and friction faces should be lubricated sparingly rather than generously.
When using different lubricants, chemical decomposition can often occur. To prevent failure of lubrication we recommend using the original lubricants stated below.

Fig. 20

Wacker silicon oil AK 300000

BP super viscostatic 10 W/40

Shell alvania No. 2

