

Service - Manual

Page	
2	Technical data
3/4	Wiring diagram
5	Audio connection diagram
6	Dual EDS 500 electronic direct drive system
6	Replacement of motor electronic
6	Replacement of motor mechanic
7	Adjustment of nominal speeds
7	Setting 78 rpm nominal speed
7	Stroboscope
7	Pitch control
8	Tonearm and tonearm suspension
8	Removal of tonearm from bearing frame
8	Removal of tonearm compl. with tonearm suspension
8	Removal of spring housing
9	Adjustment of tonearm suspension
9	Antiskating control
9	Cue control
9	Replacement of cue control assembly
10	Tonearm Control
10	Continuous Play
10	Start
10	Manuel Start
11	Stopping
11	Muting Switch
11	Shutt-off Mechanism
11	Adjustment Points: Tonearm set Down Point Shut off Point
12	Tonearm vertical lift
12	Power switch
12	Pick-up Head not Parallel
13	Correct nominal speed obtained only at
13	extreme setting of pitch control
13	Stylus slips out of record groove
	Tonearm does not set down or lowers
13	onto record too quickly
13	Vertikal Tonearm lift
13	Platter does not start
13	Tonearm does not set down correctly
	Motor does not shutt-off
	Acoustic feedback
14-17	Replacement with exploded views
18	Lubrication

Technical Data

Current
Line voltage
Drive
Power input
Power consumption

Time from start to rated speed Platter
Platter speed
Pitch control

Speed control (monitoring)

Sensitivity of the illuminated strobe (for 0.1 \% speed deviation)
Total wow and flutter
Rumble
(according to DIN 45 500)
Tonearm
Effective length of tonearm
Offset angle
Tangential tracking error
Tonearm bearing friction

Stylus pressure

Cartridge holder

Adjustable Overhang Cartridge

Fig. 1

Transistoren von der Anschlußseite gesehen Transistors as seen from the connecting side Transistors vus du côté des connexions

IC
von der Bestückungsseite gesehen as seen from the top side vu du côté éléments

5

555

BD 415
\square
C ${ }_{2}^{1}$
3
5
8

Fig. 2 TA-Anschlußschema / Audio Connection Diagram / Schema de branchement / Esquema de conexion del fono captor

Fig. 3

Fig. 4

Direct Drive System Dual EDS 500

For repair of the Dual EDS 500 special tools and measuring means are required. Work on the motor or motor electronics system should, therefore, only be carried out by an authorized Dual service station.

Removal

1. Extract unit plug from power line. Lift off platter (4). Bring unit into head position.
2. Remove self tapping screws (112) and cover of power part (113).
3. Loosen connection for operating voltage on power plate (109). Unsolder connecting leads on speed control (129), turn switch (5) and generator. Open twists of holding angle (150) with flat pliers.
4. Pull off motor electronics (152) system from motor (18) carefully.
5. Fix replacement motor electronics. Solder connecting cables (see connection diagram Fig. 4).
6. Slide cover over power part and fix it by means of machine screws (112).
7. With the unit in normal position connect it to power line. Switch on unit and check power consumption on operation:
$220 \mathrm{~V} / 50 \mathrm{~Hz}$ approx. 15 mA
$110 \mathrm{~V} / 60 \mathrm{~Hz}$ approx. 25 mA
Check nominal speeds. If necessary, readjust as described below.

Replacement of Motor Mechanic

1. Extract unit plug from power line. Remove platter (4).
2. With the unit in head position remove self tapping screws (112) and cover of power part (113). Loosen connection for operating voltage on power plate (109).

3. Unsolder connecting leads to rotary switch (5) and the generator. Open twists of holding angle (150) with flat pliers. Lift off motor electronic (152). Remove machine screw (151) and holding angle (150).
4. Loosen threaded pins (15) and remove platter cone (14). Remove the three screws (148). Lift off motor mechanics (149).
5. Put platter cone (14) on new motor mechanics and fix it. Fix new motor mechanics with the three screws (148). Fix holding angle (150) with screws (151). Insert motor electronics (152) and twist holding pieces.

Solder on resp. plug connecting leads (Fig. 4).
Push cover on power part and fix it with screws (112).
6. With the unit in normal position connect it to the power line Switch on unit and check power consumption when operating:
$220 \mathrm{~V} / 50 \mathrm{~Hz}$ approx. 15 mA
$110 \mathrm{~V} / 60 \mathrm{~Hz}$ approx. 25 mA
Check nominal speeds. If necessary, readjust as described below.

Setting nominal speeds

With knob (7) bring the fine speed control (129/R 19) into center position. With controls (R 8) and (R 9) on the motor electronic system adjust nominal speeds. Control (R 8) is used for $331 / 3 \mathrm{rpm}$. R 9 for 45 rpm . Check with strobe disk.

Changeover to 78 rpm nominal speed

Instead of 45 rpm the Dual 621 can be changed to a nominal speed of 78 rpm .
To change the speed bring the fine speed control (129/R 19) in center position using knob (7). Using control R 9 on the motor electronics board (172) adjust for 78 rpm . Check with strobe disk.

Stroboscope

Accurate setting of the platter speeds $331 / 3$ and 45 rpm can be checked during play with the aid of the stroboscope.
When the platter (4) is rotating at exactly $331 / 3$ or 45 rpm the lines of the stroboscope appear to stand still. If the lines move in the direction of rotation of the platter, the platter speed is too high. If the lines move backwards, the platter is rotating more slowly than the nominal speed. Adjustment of platter speeds $331 / 3$ and 45 rpm can make with the "pitch" control (7).
Strobe markings are provided on the outer edge of the platter for 50 and 60 Hz line frequencies.
To replace glow lamp (157) remove machine screws (160) and remove strobe cover (156).
It can happen that the stroboscope lines appear to move slightly although the exact speed setting with stroboscope stationary has not been altered. This apparent contradiction is explained by the fact that the electronic central drive motor operates fully independently of line frequency whilst the only relatively accurate line frequency of the AC current supply is used for speed measurement with the light stroboscope. The constantly detectable fluctuations of line frequency by $\pm 0.2 \%$ according to the information of the electricity supply companies brief frequency fluctuations up to 1% are possible - only effect the stroboscope indication and can cause the lines to "wander" although the platter speed is as constant and absolutely accurate as before.

Pitch Control

Each of the two standard speeds $331 / 3$ and $45 \mathrm{rpm}(78 \mathrm{rpm})$ can be varied by about 10%. The variable speed control (129/ R 19) located in the voltage divider is adjusted by turning the pitch control knob (7). By this the differential amplifier is altered and the motor speed accordingly.

Fig. 6

Fig. 7

Tonearm and Tonearm Suspension

The feather-light, extremely torsion resistant all-metal tonearm is suspended in a gimbal. Suspension is by means of 4 hardened and precision polished steel points which rest in precision ball bearings. Tonearm bearing friction is thus reduced to a minimum.
$\begin{array}{lll}\text { Bearing friction vertical } & 0.07 \mathrm{mN} & (0.007 \mathrm{p}) \\ \text { Bearing friction horizontal } & 0.16 \mathrm{mN} & (0.016 \mathrm{p})\end{array}$
as related to stylus point.
As a result, it ensures most favourable pick-up conditions. Before adjusting the tracking force to suit the built-in pick-up cartridge the tonearm is balanced with the scale set to zero. Coarse adjustment is carried out by moving the weight with the stem (49), the subsequent fine adjustment by turning the weight. The balance weight is designed such that pick-up cartridges having a deadweight of $4.5-10 \mathrm{~g}$ can be balanced.
The tracking force is adjusted by turning the graduated spring housing (60) incorporating a coil spring. The scale has markings for a range of adjustment from 0 to $30 \mathrm{mN}(0$ to 3 p$)$ which permit accurate adjustment of the tracking force. One graduation in the range of $2-15 \mathrm{mN}(0.2-1.5 \mathrm{p})$ corresponds to 1 mN $(0.1 \mathrm{p})$ in the range of $15-30 \mathrm{mN}(1.5-3 p)$ to $2.5 \mathrm{mN}(0.25 \mathrm{p})$.

Fig. 9

Removing the tonearm from the bearing frame

1. Clamp unit in repair jig. Remove weight (49) and turn out fixing screw (52). Set tracking force scale (60) to zero.
2. Move unit into head position. Remove screening plate (140). Unsolder tonearm connecting on muting switch (137).
3. Move unit into normal position. Remove both mounting screws - SW 5.5 (54).
For installation proceed in the reverse order.

Removal of tonearm assembly with tonearm bearing

We recommend the following procedure:

1. Clamp unit in the repair jig. Set spring housing scale (60) to zero. Lock tonearm (48). Remove weight (49).
2. Move unit into head position and remove the screening plate (140). Unsolder the tonearm connections on the muting switch (137).
3. Remove lock washer (184). Lift off main lever (183) and bearing support (182). Remove lock washer (144). Lift off setting raie (141) and rotary bearing (143) and turn towards motor (149).
4. Unlock tension spring (209). Loosen lock washer (212) and remove skating lever (211).
5. Remove lock washer (211) and slide bar (171). Lift off shutoff bar (161) from segment (208).
6. Remove hex nut (170). Remove sink screw (174). Hold tonearm (48) and lift off counter bearing (173) and segment (208).
7. Remove tonearm complete with tonearm bearing.

Reverse this procedure when reassembling. Please bear in mind the threaded pin (33) is correctly positioned in the ball bearing.

Replacing spring housing

Remove tonearm (48) from bearing frame (51) as described above. Loosen lock nut (55) and threaded pin (56). Unscrew bearing screw (61). Lift bearing frame (59). Remove spring housing (60). When installing note that the helical spring catches the bearing frame. Slide in washer (60) and tighten bearing screw (61). Reinstall tonearm (48). Set bearing play as described below using threaded pin (56) and lock nut (55).

Adjusting the tonearm bearing

First balance tonearm exactly. Both bearings must have slight, just perceptible play. The horizontal tonearm bearing is correctly adjusted when at anti-skating settings " 0.5 " and being touched it slides in without resistance. The vertical tonearm bearing is correctly adjusted when it swings in after being touched. The play of the horizontal tonearm bearing should be adjusted with threaded pin (33) and that of the vertical tonearm bearing with threaded pin (56).

Anti-skating Device

To compensate for skating force use the knurled ring (66). The asymmetric cam plate (213) displaces the skating lever (211) from the tonearm pivoting point. The anti-skating force is transmitted to the segment (208) and to the tonearm (48) by tension spring (209).
Optimum adjustment is carried out at the factorys for styli having a tip radius of $15 \mu \mathrm{~m}$ (conical), 5/6 and $18 / 22 \mu \mathrm{~m}$ (elliptical), and CD 4-cartridges.
Any alteration can only be carried out with the aid of a Dual-Skate-0-Meter and a test record and should only be done by an authorized service station.

Recheck as follows:
Balance tonearm (48) correctly. Set knurled ring (66) to 0 . The tonearm should remain at any desired point within its turning range. The hole of the skating lever (211) should be in alignment with the center line of the tonearm. Adjustment is made by the eccentric pulley (E) which is accessible through the hole in the installation plate (23) between the knurled ring (68) and the tonearm.
Then set knurled ring (66) to " 0.5 ". The tonearm should now smoothly rotate from the platter center to its rest (71).

Cue Control

By moving the lever (190) forward (V) lift cam (192) rotates. The slide bar (141) transmits the lifting movement to the lift pin (206), that raises the tonearm. As a result, the cue control permits raise up the tonearm at any desired point.
The lever (190) is released by moving the cue control lever rear wards ($\mathbf{\Sigma}$). As a result of the action of compression spring (205) the lift pin (206) is brought back to its normal position and the tonearm loweres slowly. Lowering of the tonearm is damped by silicone oil in the lift tube.

Adjustment Point

The lift can be varied by turning the sleeve (45). The distance between the record and the needle should be 5-7 mm.

Replacement of Cue Control Plate

Replace cue control plate (207) as follows:

1. Clamp unit in the repair jig. and lock tonearm. Turn unit in head position.
2. Remove safety washer (184). Lift off main lever (183) and bearing support (182).
3. Remove safety washer (144). Lift off positioning bar (141) and rotary bearing (143) and turn towards motor (149).
4. Remove both machine screws (204), remove lift plate compl. (207).

For installation proceed in the reverse order.

Fig. 11

Fig. 12

Tonearm Control

Automatic movement of the tonearm is initiated by the control cams on the inside of the cam wheel (16) on rotating through 360°.
The control elements for raising and lowering are the main lever (183) and lifting bolt (206), for horizontal movement the main lever (183) with segment (208).
The automatic tonearm set down mechanism is designed for 30 cm and 17 cm records and is coupled to the platter speed changeover. The setdown points of the tonearm are determined by the spring pin of segment (208) contacting the slide bar (141). Limitation of the horizontal movement of the tonearm is produced by the pin of segment contacting the stop attached to the slide bar (189). Only during set-down does main lever (183) lift the slide bar (141) and the stop attached to it which, as a result, moves into the swivel range of the stop pin fitted on the segment. After completion of set down (lowering of the tonearm onto the record) slide bar (141) is released again and returns to its neutral position. As a result, the slide bar (141) moves out of the swivel range of the pin, so that unimpeded movement of the tone arm is possible for playing.

Continuous Play

Continuous Play is switched on by turning the rotary knob (67) to " ∞ ". The rotary knob (67) turns the switch angle (185). The switch rod (189) keep the change lever (180) in starting position.

After the record has been played the tonearm returns automatically to the lead-in groove of the record. This procedure is repeated until the switch lever (68) is brought to the "stop" position or the rotary knob (67) to position " 1 ".

Adjustment Point

Pull mains plug. Remove platter (4). Bring rotary knob (67) to position " 00 ". Turn cam wheel to central position. The change lever (180) turns the guide lever (U) and the top of the guide lever must at least be brought to the cam range. Adjust by bending the switch rod (189).

Start

Switching the switch lever (68) into the "start" position initiates the following sequence:
a) The start lever (219) rotates the switch lever (180) which is pivoted about the notched stud. At the same time, the switch arm (41) is moved the motor (149), via the power switch. (116), and the platter starts turning.
b) Operating the switch lever (68) also releases the start slide (38) which is drawn toward the cam by means of the tension spring (156). By that the shut-off lever engage with the drive pinion and the cam turns.

Manual start

The latch (215) which is connected to the switch arm (41) engages in the four-sided plate when the tonearm is moved manually. The switch arm connects the mains supply to the motor (149) via the power switch (116) and the platter rotates.

When the run-out groove of the record is reached, the tonearm is lifted and returned, the motor is switched off automatically. If the tonearm is lifted off the record before the run-out, and returned by hand to the pillar, then the bolt on the segment (208) engages the latch (215) so that the switch arm is returned to its starting position. This switches off the mains supply.

Fig. 13

Fig. 14

Stopping

When control lever is set to "stop position the start slide (38) which is pulled towards the cam by means of tension (34), becomes free. As a result, the shut-off lever is moved into the range of dogs cam. The lever remains in its stop position.

Muting Switch

To prevent disturbing noises during automatic operation of the tonearm the unit is fitted with a muting switch. Control of the switch springs for both channels is effected by the camwheel. With the unit in neutral state the short circuit of the pick-up leads is eliminated.

Adjustment

In zero position of the cam there should be a clearance of approximately 0.5 mm between the contacts of the muting switch. This clearance should be adjusted by bending the muting switch contacts. The contacts should be sprayed with a suitable cleaning agent.

Shut-off

The shut-off and stop functions depend on the position of the guide lever (U). The guide lever (U) is brought to stop position by the main lever (183) after every start (longer end of the guide lever towards cam wheel centre).
The shut-off bar (161) is guided along in proportion to the movement of the segment (208).
The shut-off procedure is imitated after a record has been played by the dog (M) of the platter and the shut-off lever (A).
The shut-off lever (A) is moved towards the $\operatorname{dog}(M)$ of the platter within the shut-off range (record diameter 116 mm to 122 mm) (Fig. 16 a).
The dog engages the shut-off lever (A). The cam wheel (16) is moved from 0 position and engage with the drive pinion of the platter (Fig. 16 b).
The main lever (183) guides the tonearm back and effected the tonearm to return to its rest position. During the running in of the cam wheel into 0 position the roll (42) of the switch arm (41) can run into the cut-out provided at the cam wheel and achate the power switch (116).

Adjustment Points

Tonearm set-down point

The set-down point can be varied with the eccentric bolt (176). If the stylus sets down onto the record too far inside or outside turn eccentric bolt (176) in left or right direction.

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Shut-off Point

The shut-off point (shut-off area of record diameter (116)/ 122 mm) can be varied with the eccentric (E) mounted on the segment (208).

Tonearm vertical lift

With the adjustable sleeve (202) the tonearm vertical lift (for automatic operation) can be adjusted. Pull out the mains plug, unlock the tonearm, turn the cam wheel (16) until the tonearm reaches its highest point. The tonearm should now be approximately 4 mm above the pillar stop. Adjust by means of sleeve (202), 'turn left or right.

Adjust a play of 0.1 mm between shaft pin and coupling plate (of the tonearm) with the sleeve (57).
(Measured at the tonearm app. 0.5 mm).
Fig. 19

Fig. 20

Remedy

Remove platter. Insert screwdriver through the hole in the chassis mounting plate. Align tonearm head and retighten screw.

Cause

Seat of tonearm head on the tonearm tube has changed during transit.

Defect

Speed lies at limit of the range of adjustment of the pitch control

Cause

Nominal speed is maladjusted.

Remedy

Readjust nominal speed, described on page 7

Stylus slides out of playing groove

Tonearm moves with track ing force and antiskating scale in 0 -position outwards or inwards

Tonearm does not set down on record or lowers too quickly when operating the cue control lever (190)

Vertical tonearm movement shows resistance
a) Tonearm is not balanced
b) Tonearm tracking force is too low
c) Anti-skating setting incorrect
d) Stylus tip worn or chipped
e) Excessive bearing friction in tonearm bearing
f) Steel ball (162) of shut-off bar (161) missing
a) Antiskating device maladjusted
b) Tight tonearm leads cause a torque

Excessive or insuffidient damping as a result of contamination of the silicane oil in the lift tube

Excessive friction of Lift Pin (205) in guide tube

Power supply to motor interruppted. Power fuse (110) defect

Tonearm set-down point is incorrectly set

Suppressor capacitor in power switch ist faulty (short circuit).
a) Chassis components (e.g. connecting leads) rubbing on board cut out
b) Connecting leads too tight.
a) Balance tonearm
b) Adjust force to the value stated by the cartridge manufacturer
c) Correct anti-skating setting
d) Renew stylus
e) Check tonearm bearings and readjust if necessary
f) Renew steel ball
a) Readjust anti-skating device as described on page 9 .
b) Slacken leads

Remove cue control plate (207). Remove shaft pin (200) and washer (201). Remove adjustment bush sleeve (212). Remove washer (203). Remove lift pin (206) and compression spring (205). Clean lift tube and lift pin. Smear lift pin evenly with "Wacker Silicon Oil AK 300 000". Reassemble components.

See obove, if necessary change the lift pin (206)

Replace the fuse (110)

The tonearm set-down point can be adjust with the eccentric bolt (176)

Replace suppressor capacitor in power switch
a) Line up mounting board cut-out according to installation instructions
b) Slacken or lengthen leads,

Replacement parts

Pos.	Part.No.	Qty.	Description	Pos.	Part.No.	Qty.	Description
1	220213	1	Centering disc	49	244467	1	Balance weight compl.
2	214054	1	Washer	50	239741	1	Pointer
3	244460	1	Turntable mat compl.	51	246037	1	Bearing race compl.
4	244461	1	Turntable compl. with mat	52	236051	1	Clamp screw
5	238034	1	Rotary switch	53	244244	2	Washer 3.05/6/1.5
6	242184	1	Rotary knob	54	244103	2	Hexnut $\quad 2.9 \times 6.5$
7	242189	1	Rotary knob compl.	55	234635	2	Stop nut
8	242191	3	Threated pin	56	234634	1	Threated pin
9	244462	1	Pitch control cover	57	242131	1	Adjustment screw
10	200444	8	Spring washer	59	246039	1	Bearing compl.
11	239414	3	Shipping screw compl.	60	236907	1	Spring housing compl.
13	210147	3	Lock washer 4	61	234637	1	Bearing screw
14	242192	1	Platter cone	65	246040	1	Cover back
15	242191	3	Threated pin M 3×3	66	236081	1	Ring
16	246035	1	Cam wheel compl.	67	237544	1	Rotary knob
17	232975	3	Spring mount compl.	68	242743	1	Switch lever compl.
			(power transformer side back)	69	246041	1	Cover front
	237228	1	Spring mount compl.	70	200444	8	Spring washer
			(Tonearm side front)	71	244472	1	Support compl.
18	230529	4	Threated piece	172	210362	1	Hex nut
19	230523	3	Compression spring	101	210517	2	Machine screw M 4×10
			(Power transformer side back)	102	210648	2	Washer $\quad 4.2 / 14 / 1$
	236712	1	Compression spring (Tonearm side front)	104	209939	2	Sleeve
20	200723	4	Rubber damping	105	210480	4	Machine screw AM 3×6
21	200722	4	Steel cup	106	227548	2	Grommet with cord stopper
24	234582	1	Tension spring	107	228209	1	Sleeving
25	244463	1	Tonearm head compl.	108	242284	1	Insulating plate
26	237223	1	Contact plate compl.	109	244473	1	Power plate compl.
27	234611	1	Handle	110	242478	1	Fuse T0.063 A
28	210182	1	Lock washer $\quad 4.2 / 8$	C 51	225322	1	Foil $68 \mathrm{nF} / 400 \mathrm{~V} / 10$ \%
29	210630 210197	1	$\begin{array}{ll}\text { Washer } & \text { C'" clip }\end{array} 4.2 / 8 / 0.5$	C 52	224886	1	Paper $\quad 47 \mathrm{nF} / 250 \mathrm{~V} / 20 \%$
30 31	210197 236242	1	"C" clip	C 53	222760	2	Ceramic $\quad 20 \mathrm{nF} / 50 \mathrm{~V}$
32	234635	2	Stop nut	C 54	222760	2	Ceramic $\quad 20 \mathrm{nF} / 50 \mathrm{~V}$
33	230063	1	Threated pin	C 55	227880	1	Elyt $1000 \mu \mathrm{~F} / 40 \mathrm{~V}$
34	242602	1	Frame compl.	D 51	225247	1	BY 183/300
35	242677	1	Machine screw	D 52	227344	4	1 N 4001
36	233710	1	Tension spring	D 53	227344	4	1 N 4001
37	210146	8	Lock washer	D 54	227344	4	1 N 4001
38	242786	1	Start slider	D 55	227344	4	1 N 4001
39	210361	2	Hex nut	R 51	232402	1	Carbon $22 \mathrm{k} \Omega / 0.25 \mathrm{~W} / 5 \%$
40	242768	1	Bush	R 52	232401	1	Carbon $12 \mathrm{k} \Omega / 0.125 \mathrm{~W} / 5 \%$
41	242765	1	Switch lever		232401		Carbon 12 k / $0.125 \mathrm{~W} / 5 \%$
42	242785	1	Roll	111	244474	1	Power transformer
43	200650	1	Rubber sleeve	112	210283	2	Fillister screw
44	246036	1	Mounting plate compl.	113	244475	1	Power part compl.
45	242770	1	Adjustment screw	116	242581	1	Power switch compl.
48	244466	1	Tonearm compl.	117	236335	1	Slider

Fig. 22 Exploded View 1

(44)

(10)
(11) $5 \pi=4$
(112)

(126)
 . -1

Replacement parts

Lubrication

All bearings and friction points are adequately lubricated by the manufacturer. Replenishment of oil and grease is only necessary after approximately 2 years of normal use of the turntable as the most important bearing points (motor bearings) have sintered metal bushes.
Bearing points and friction faces should be lubricated sparingly rather than generously.
When using different lubricants, chemical decomposition can often occur. To prevent failure of lubrication we recommend using the original lubricants stated below.

Fig. 24

Fig. 25

