

Contents

Page	
1	Technical data
2	Audio connection diagram
3	Wiring diagram
4	Dual EDS 500 eelctronic direct drive system
4	Replacement of motor electronic
4	Replacement of motor mechanic
4	Adjustment of nominal speeds
4	Setting 78 rpm nominal speed
5	Stroboscope
5	Pitch control
5	Tonearm and tonearm suspension
6	Removal of tonearm or spring housing
6	Removal of tonearm compl. with tonearm suspension
6	Adjustment of tonearm suspension
6	Fitting 1/2 inch pick-up
6	Antiskating control
7	Cue control
7	Replacement of cue control assembly
7	Tonearm Control
7	Muting Switch
8	Continuous Play
8	Start
8	Manuel Start
8	Stopping
9	Shutt-off Mechanism
9	Adjustment Points: Tonearm set Down Point
9	Shut off Point
9	Tonearm does not set down
9	Vertikal Tonearm lift
10	Correct nominal speed obtained only at extreme setting of pitch control
10	Platter does not start
10	Tonearm does not set down correctly
10	Motor does not shutt-off
10	Acoustic feedback
10-13	Replacement with exploded views
14	Lubrication

Fig. 1 Audi Connection Diagramm

linker Kanal
left channel
Canal gauche

Fig. 4

Fig. 5

Direct Drive System Dual EDS 500

For repair of the Dual EDS 500 special tools and measuring means are required. Work on the motor or motor electronics system should, therefore, only be carried out by an authorized Dual service station.

Replacement of motor electronics

1. Extract unit plug from power line. Lift off platter 4 . Bring unit into head position.
2. Remove machine screws $\mathbf{1 1 2}$ and cover of power part.
3. Unsolder connecting leads to motor and generator. Open twists of holding angle 150 with pliers. Remove motor electronics 152, screws 151 and holding angle 150.
4. Pull off motor electronics $\mathbf{1 5 2}$ system from motor $\mathbf{1 8}$ carefully.
5. Fix replacement motor electronics. Solder connecting cables see connection diagram Fig. 5.
6. Slide cover over power part and fix it by means of machine screws 112.
7. With the unit in normal position connect it to power line. Switch on unit and check power consumption on operation:
$220 \mathrm{~V} / 50 \mathrm{~Hz}$ approx. 15 mA
$110 \mathrm{~V} / 60 \mathrm{~Hz}$ approx. 25 mA
Check nominal speeds. If necessary, readjust as described below.

Replacement of motor mechanics

1. Extract unit plug from power line. Remove platter 4.
2. With the unit in head position remove machine screws 174 and washers 173. Pull off motor electronics board 172 together with cover 175 carefully from the motor 18.
3. Loosen connection for operating voltage at het plate 109. Unsolder connecting leads to speed fine adjustment 129, rotary switch 5 and the generator. Open twists of holding angle 152 with pliers.
4. Loosen threaded pins 13 and remove platter cone 12. Remove the three screws 148. Lift off motor mechanics 149.
5. Put platter cone $\mathbf{1 2}$ on new motor mechanics and fix it. Fix new motor mechanics with the three screws 148. Fix holding angle 150 with screws 151. Insert motor electronics 152 and twist holding pieces.
Solder on resp. plug connecting leads (fig. 5).
Push cover on power part and fix it with screws 112
6. With the unit in normal position connect it to the power line Switch on unit and check power consumption when operating;
22 $\sqrt{\prime} / 50 \mathrm{~Hz}$ approx. 15 mA
11L V/60 Hz approx. 25 mA
Check nominal speeds. If necessary, readjust as described below.

Setting nominal speeds

With knob 7 bring the fine speed control 129/R 19 into center position. With controls R 8 and R 9 on the motor electronic system adjust nominal speeds. Control R 8 is used for $331 / 3$ rpm, R 9 for 45 rpm . Check with strobe disk.

Changeover to 78 rpm nominal speed

Instead of 45 rpm the Dual 622 can be changed to a nominal speed of 78 rpm .
To change the speed bring the fine speed control 129/R 19 in center position using knob 7. Using control R 9 on the motor electronics board 152 adjust for 78 rpm . Check with strobe disk.

Stroboscope

Accurate setting of the platter speeds $331 / 3$ and 45 rpm can be checked during play with the aid of the stroboscope.
When the platter 4 is rotating at exactly $331 / 3$ or 45 rpm the lines of the stroboscope appear to stand still. If the lines move in the direction of rotation of the platter, the platter speed is too high. If the lines move backwards, the platter is rotating more slowly than the nominal speed. Adjustment of platter speeds 33 $1 / 3$ and 45 rpm is carried out separately with the "pitch" controls 7.
Strobe markings are provided on the outer edge of the platter for 50 and 60 Hz line frequencies.

To replace glow lamp 157 remove machine screws 160 and remove strobe cover.

It can happen that the stroboscope lines appear to move slightly although the exact speed setting with stroboscope stationary has not been altered. This apparent contradiction is explained by the fact that the electronic central drive motor operates fully independently of line frequency whilst the only relatively accurate line frequency of the AC current supply is used for speed measurement with the light stroboscope. The constantly detectable fluctuations of line frequency by $\pm 2 \%$ according to the information of the electricity supply companies brief frequency fluctuations up to 1% are possible - only effect the stroboscope indication and can cause the lines to "wander" although the platter speed is as constant and absolutely accurate as before.

Pitch Control

Each of the two standard speeds $331 / 3$ and $45 \mathrm{rpm}(78 \mathrm{rpm})$ can be varied by about 10%. The variable speed control 129/R 19 located in the voltage divider is adjusted by turning the pitch control knob 7. By this the differential amplifier is altered and the motor speed accordingly.

Fig. 7

Tonearm and Tonearm Suspension

Th efeather-light, extremely torsion resistant all-metal tonearm is suspended in a gimbal. Suspension is by means of 4 hardened and precision polished steel points which rest in precision ball bearings. Tonearm bearing friction is thus reduced to a minimum.
Bearing friction vertical $\quad 0.07 \mathrm{mN} \quad(0.007 \mathrm{p})$ Bearing friction horizontal $0.15 \mathrm{mN} \quad(0.015 \mathrm{p})$
as related to stylus point,
As a result, it ensures most favourable pick-up conditions. Before adjusting the tracking force to suit the built-in pick-up cartridge the tonearm is balanced with the scale set to zero. Coarse adjustment is carried out by moving the weight with the stem 49, the subsequent fine adjustment by turning the weight.

The tracking force is adjusted by turning the graduated spring housing 58 incorporating a coil spring. The Rotary knob 54 has markings for a range of adjustment from 0 to $30 \mathrm{mN}(0$ to 3 p) which permit accurate adjustment of the tracking force. One graduation in the range of $2-15 \mathrm{mN}(0.2-1.5 \mathrm{p})$ corresponds to $1 \mathrm{mN}(0.1 \mathrm{p})$, in the range of $15-30 \mathrm{mN}(1.5-3 \mathrm{p})$ to $2.5 \mathrm{mN}(0.25 \mathrm{p})$.

Fig. 9

Fig. 10

To Remove the tonearm or the spring housing

1. Secure the unit in a repair stand. Turn the rotary turn switch 51 to the zero position. Lock the tonearm 48. Remove the counterweight 49.
2. Turn the unit over. Remove the screening sheet 140 and solder off the tonearm connections at the short circuiter 137. Turn the unit the right way up.
3. Remove the fillister head screw 55. Remove the rotary turn switch 54 and the washer 53 .
4. Loosen the nut $\mathbf{5 0}$ and the grub screw $\mathbf{5 1}$. Draw the tonearm 48 complete with bearing 57 from the bearing race 52 . The spring housing 52 or the tonearm 48 may now be changed.
Reassembly involves the reverse procedure.

Removal of tonearm assembly with tonearm bearing

We recommend the following procedure:

1. Clamp unit in the repair jig. Set the rotary knob 54 to zero. Lock tonearm 48. Remove weight 49
2. Move unit into head position and remove the screening plate 140. Unsolder the tonearm connections on the muting switch 137.
3. Remove lock washer 184. Lift off main lever 183 and bearing support 182. Remove lock washer 144. Lift off setting raie 141 and rotary bearing 143 and turn towards motor 149.
4. Unlock tension spring 209. Loosen lock washer 212 and remove skating lever 211.
5. Remove lock washer 211 and slide bar 171. Lift off shut-off bar 161 from segment 208.
6. Remove hex nut 170. Remove sink screw 174. Hold to nearm 48 and lift off counter bearing 173 and segment 208.
7. Remove tonearm complete with tonearm bearing.

Reverse this procedure when reassembling. Please bear in mind the threaded pin 33 is correctly positioned in the ball bearing.

Adjusting the tonearm bearing

First balance tonearm exactly. Both bearings must have slight, just perceptible play. The horizontal tonearm bearing is correctly adjusted when at anti-skating settings " 0.5 " and being touched it slides in without resistance. The vertical tonearm bearing is correctly adjusted when it swings in after being touched. The play of the horizontal tonearm bearing should be adjusted with threaded pin 33 and mat of the vertical tonearm bearing with threaded pin 51.

Fitting a $1 / 2$ inch cartridge

If a cartridge with $1 / 2$ inch standard mount is to be fitted, the conversion kit 31 Number 262186 is necessary. The proper method of fitting is shown in fig. 8 .
Also the decorative cover should be removed from the counterweight 49 and should be fitted with the compensatory weight to be found in the conversion kit 31.
Any alteration can only be carried out with the aid of a Dual-Skate-0-Meter and a test record and should only be done by an authorized service station.

Anti-skating Device

To compensate for skating force use the knurled ring 68. The asymmetric cam plate displaces the skating lever 216 from the tonearm pivoting point. The anti-skating force is transmitted to the segment 207 and to the tonearm 48 by tension spring 208 Optimum adjustment is carried out at the works for styli having a tip radius of $15 \mu \mathrm{~m}$ (conical), $5 / 6$ and $18 / 22 \mu \mathrm{~m}$ (elliptical). Any alteration can only be carried out with the aid of a Dual Skate-0-Meter and a test record and should only be done by an authorized service station.

Cue Control

By moving the lever 190 forward () lift cam 192 rotates. The slide bar 141 transmits the lifting movement to the lift pin 206, that raises the tonearm. As a result, the cue control permits raise up the tonearm at any desired point.
The lever 190 is released by moving the cue control lever rear wards (\boldsymbol{I}). As a result of the action of compression spring 205 the lift pin 206 is brought back to its normal position and the tonearm loweres slowly. Lowering of the tonearm is damped by silicone oil in the lift tube.

Replacement of Cue Control Plate

Replace cue control plate 207 as follows:

1. Clamp unit in the repair jig, and lock tonearm. Turn unit in head position.
2. Remove safety washer 184. Lift off main lever 183 and bearing support 182.
3. Remove safety washer 144 . Lift off positioning bar 141 and rotary bearing 143 and turn towards motor 149
4. Remove both machine screws 204, remove lift plate compl. 207.

For installation proceed in the reverse order.
The lift can be varied by turning the sleeve 45. The distance between the record and the needle should be 5-7 mm.

Tonearm Control

Automatic movement of the tonearm is initiated by the control cams on the inside of the cam wheel $\mathbf{1 6}$ on rotating through 360°.
The control elements for raising and lowering are the main lever 183 and lifting bolt 206, for horizontal movement the main lever 183 with segment 208
The automatic tonearm set down mechanism is designed for 30 cm and 17 cm records and is coupled to the platter speed changeover. The setdown points of the tonearm are determined by the spring pin of segment 208 contacting the slide bar 141. Limitation of the horizontal movement of the tonearm is produced by the pin of segment contacting the stop attached to the slide bar 189. Only during set-down does main lever 183 lift the slide bar 141 and the stop attached to it which, as a result, moves into the swivel range of the stop pin fitted on the segment. After completion of set down (lowering of the tonearm onto the record) slide bar 141 is released again and returns to its neutral position. As a result, the slide bar 141 moves out of the swivel range of the pin. so that unimpeded movement of the tonearm is possible for playing.

Muting Switch

To prevent disturbing noises during automatic operation of the tonearm the unit is fitted with a muting switch. Control of the switch springs for both channels is effected by the camwheel. With the unit in neutral state the short circuit of the pick-up leads is eliminated.

Adjustment

In zero position of the cam there should be a clearance of approximately 0.5 mm between the contacts of the muting switch. This clearance should be adjusted by bending the muting switch contacts. The contacts should be sprayed with a suitable cleaning agent.

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Start

Switching the switch lever 64 into the "start" position initiates the following sequence:
a) The start lever 219 rotates the switch lever 180 which is pivoted about the notched stud. At the same time, the switch arm 41 is moved the motor 149, via the power switch 116, and the platter starts turning.
b) Operating the switch lever $\mathbf{6 8}$ also releases the start slide $\mathbf{3 8}$ which is drawn toward the cam by means of the tension spring 156. By that the shut-off lever engage with the drive pinion and the cam turns.

Manual start

The latch 215 which is connected to the switch arm 41 engages in the four-sided plate when the tonearm is moved manually. The switch arm connects the mains supply to the motor 149 via the power switch 116 and the platter rotates.
When the run-out groove of the record is reached, the tonearm is lifted and returned, the motor is switched off automatically. If the tonearm is lifted off the record before the run-out, and returned by hand to the pillar, then the bolt on the segment 208 engages the latch 215 so that the switch arm is returned to its starting position. This switches off the mains supply.

Continuous Play

Continuous Play is switched on by turning the rotary knob 62 to " ∞ ". The rotary knob 67 turns the switch angle 185 . The switch rod 189 keep the change lever 180 in starting position.
After the record has been played the tonearm returns automatically to the lead-in groove of the record. This procedure is repeated until the switch lever 68 is brought to the "stop" position or the rotary knob 62 to position " 1 ".

Adjustment Point

Pull mains plug. Remove platter 4. Bring rotary knob 62 to position " ∞ ". Turn cam wheel to central position. The change lever 180 turns the guide lever \mathbf{U} and the top of the guide lever must at least be brought to the cam range. Adjust by bending the switch rod 189.

Stopping

When control lever is set to "stop position the start slide 38 which is pulled towards the cam by means of tension 34, becomes free. As a result, the shut-off lever is moved into the range of dogs cam. The lever remains in its stop position.

Shut-off

The shut-off and stop functions depend on the position of the guide lever \mathbf{U}. The guide lever \mathbf{U} is brought to stop position by the main lever 183 after every start (longer end of the guide lever to wards cam wheel centre).
The shut-off bar $\mathbf{1 6 1}$ is guided along in proportion to the movement of the segment 208.
The shut-off procedure is imitated after a record has been played by the $\operatorname{dog} \mathbf{M}$ of the platter and the shut-off lever \mathbf{A}.

The shut-off lever \mathbf{A} is moved towards the $\operatorname{dog} \mathbf{M}$ of the platter within the shut-off range (record diameter 116 mm to 122 mm). The dog engages the shut-off lever A. The cam wheel 16 is moved from 0 position and engage with the drive pinion of the platter.
The main lever 183 guides the tonearm back and effected the tonearm to return to its rest position. During the running in of the cam wheel into 0 position the roll 42 of the switch arm 41 can run into the cut-out provided at the cam wheel and achate the power switch 116.

Adjustment Points

Tonearm set-down point

The set-down point can be varied with the eccentric bolt $\mathbf{1 7 6}$. If the stylus sets down onto the record too far inside or outside turn eccentric bolt 176 in left or right direction (see Fig. 7).

Shut-off Point

The shut-off point (shut-off area of record diameter (116/ 122 mm) can be varied with the eccentric \mathbf{E} mounted on the segment 208

Tonearm lifting height

a) Remove the mains plug. Guide the tonearm 48 towards the edge of the platter. The bottom edge of the cartridge housing should be parallel to the top edge of the platter cover. Carry out alignment by turning the adjusting sleeve 202
b) Press the start button and turn the platter 4 in normal direction until the tonearm 48 reaches its highest position. The tonearm should now have a vertical play of approximately $1-2 \mathrm{~mm}$ (measured at the tonearm post). If necessary, slightly turn the adjusting sleeve 202.

Power Switch

Turn in tonearm 48. The slide 117 of the power switch 116 should have a play of $0.2-0.5 \mathrm{~mm}$. Adjust by bending the switch arm 41

Fig. 16

Fig. 17

Fig. 18

Remedy

Remove cue control plate 207. Remove shaft pin 200 and washer 201. Remove adjustment bush sleeve 212. Remove washer 203. Remove lift pin 206 and compression spring 205. Clean lift tube and lift pin. Smear lift pin evenly with "Wacker Silicon Oil AK 300 000". Reassemble components.

See obove, if necessary change the lift pin 206

Defect

Speed lies at limit
of the range of adjustment of the pitch control

Platter does not turn after switching unit on and moving tonearm in side

Tonearm does not set down at the lead-in groove of the record

Motor does not switch

 off when tonearm set down on rest.Acoustic feedback

Cause

Nominal speed
is maladjusted.

Power supply to motor interruppted. Power fuse $\mathbf{1 1 0}$ defect

Tonearm set-down point is incorrectly set

Suppressor capacitor in power switch ist faulty (short circuit).
a) Chassis components (e.g. connecting leads) rubbing on board cut out
b) Connecting leads too tight.

Remedy

Readjust nominal speed, described on page 7.

Replace the fuse 110

The tonearm set-down point can be adjust with the eccentric bolt 176

Replace suppressor capacitor in power switch
a) Line up mounting board cut-out according to installation instructions
b) Slacken or lengthen leads.

Replacement parts

Pos.	Part.No.	Qty	Description	Pos.	Part. No.	Qty	Description
1	220213	1	Centering piece	50	246884	1	Counter nut
2	214056	1	Washer	51	234634	1	Grub screw
3	263254	1	Platter compl. with mat	52	263329	1	Bearing frame compl.
4	263256	1	Platter compl.	53	261798	1	Washer $\quad 5.2 / 10$
5	238034	1	Rotary switch	54	248989	1	Rotary knob
6	260335	1	Rotary knob	55	249097	1	Raised counter sunk head
7	260336	1	Rotary knob				screw M 2.5×12
8	242191	3	Grub screw	56	236069	1	Machine screw
9	263257	1	Pitch cover	57	263330	1	Bearing compl.
10	200444	8	Spring washer	58	263331	1	Spring housing compl.
11	239414	3	Shipping screw compl.	59	248979	1	Lifting plate
12	262634	1	Washer	60	210597	1	Washer 3.2/6/0.5
13	210147	1	Lock washer	61	262294	1	Hexagon sheet screw \quad B 2.9×6.5
14	242192	1	Platter come compl.	62	260334	1	Rotary knob
15	242191	3	Grub screw	63	263332	1	Rear cover compl.
16	246035	1	Cam wheel	64	260485	1	Switch lever
17	232972	3	Spring mount compl.	65	260328	1	Stroboscop prism
	237228	1	Spring mount compl. (Tonearm side front)	66	263333	1	Front cover
18	230529	9	Threated piece	67	263334	1	Tonearm rest compl.
19	230521	3	Compression spring	68	260320	1	Cam disc
	236712	1	Compression spring (Tonearm side front)	69	242298	1	Washer
20	200723	4	Rubber damping	70	228113	1	Washer
21	200722	4	Steel cup	71	210146	3	Lock washer 3.2
24	234582	1	Tension spring	72	200444	4	Spring washer 3.2
25	263259	1	Tonearm head compl.	101	210517	2	Machine screw M 4×10
26	261929	1	Tonearm lead compl.	102	210648	2	Washer $\quad 4.2 / 14 / 1$
31	262186	1	$1 / 2$ inch conversion kit compl.	103	242283	2	Bush
32	249383	1	Counter nut	104	209939	2	Sleeve
	262695	1	Counter nut	105	210480	4	Machine screw AM 3 $\times 6$
33	234651	1	Grub screw	106	237548	2	Grommet with cord stopper
34	263260	1	Frame compl.	107	228209	1	Sleeving
35	242677	1	Machine screw M 4×8	108	242284	1	Insulating plate
36	233710	1	Tension spring	109	263.338	1	Power plate compl. 263388
37	210146	1	Lock washer	110	242478	1	Fuse T0.063 A
38 39	242786	1	Start slider				
39	210361	1	Hex nut	$\begin{array}{ll}C & 53 \\ C & 54\end{array}$	222760	2	$\begin{array}{ll}\text { Ceramic } & 20 \mathrm{nF} / 50 \mathrm{~V} \\ \text { Ceramic } & 20 \mathrm{nF} / 50 \mathrm{~V}\end{array}$
40	242768 242765	1	Bush	C C C	227880	1	$\begin{array}{lr}\text { Ceramic } \\ \text { Elyt } & 1000 \mu \mathrm{~F} / 40 \mathrm{~V}\end{array}$
41	242765	1	Switch lever			,	Ely $1000 \mu \mathrm{~F} / 40 \mathrm{~V}$
42	242785	1	Roll	D 52	227344	4	1 N 4001
43	200650	1	Rubber sleeve	D 53	227344	4	1 N 4001
44	263261	1	Mounting plate compl.	D 54	227344	4	1 N 4001
45	242770	1	Adjustment screw	D 55	227344	4	1 N 4001
47	260428	1	Clamp screw 263262	111	244474	1	
48	264020	1	Tonearm compl. 263262 Weight compl.	112	210283	2	Fillister screw
49	$\begin{aligned} & 263263 \\ & 263328 \end{aligned}$	1	Weight compl. (UAP)	116	242581	1	Power switch compl

Pos.	Part. No.	Qty	Description	Pos.	Part. No.	Qty	Description
117	236335	1	Slider	204	210472	2	Machine screw AM 3×4
118	200444	1	Spring washer	205	234798	1	Compression spring
119	233012	1	Switch plate compl.	206	242753	1	Lift pin
120	219200	1	Snab spring	207	246043	1	Lift plate
121	239732	1	Tension spring	208	263335	1	Segment
122	230148	1	Switch angle	209	218591	1	Tension spring
123	241883	1	Capacitor $10 \mathrm{nF} / 250 \mathrm{~V}$	210	201184	1	Adjustment disc
	242822	1	RF-cocke $47 \mu \mathrm{H}$	212	244331	1	Scating lever compl
124	242102	1	Cover	213	210146	8	Lock washer 3.2
125	210498	1	Machine screw M 3×28	215	242764	1	Pawl
126	231079	1	Cable holder	216	239915	1	Square plate
128	237782	1	Nut for potentiometer	217	210472	1	Machine screw AM 3×4
129	238073	1	Speed control-potentiometer (R 19)	218	218154	1	Tension spring
130	242195	1	Contact piece	219	242747	1	Switch lever
131	210587	1	Washer 3.2/7/1	220	210600	1	Washer 3.2/8/1
132	210362	1	Hexnut BM 3	221	210361	2	Hex nut
133	242187	1	Contact assembly	230	209424	1	5 pole plug
134	210469	1	Machine screw AM 3×3	231	207303	1	Audio cable compl.
135	242741	1	Switch lever	232	207301	1	Audio cable compl, with cynch plugs
136	242790	1	Contact arm	233	209436	3	Flat connector sleeve
137	242612	1	Muting switch compl.	234	209425	1	Cynch plug white
138	239806	1	Base shet	235	209426	1	Cynch plug black
139	210486	1	Machine screw \quad AM 3×8	236	214602	2	AMP plug
140	242791	1	Screning shut	237	232996	1	Power cable Europa compl.
141	242769	1	Positioning slide	238	232995	1	Power cable America compl.
142	244834	1	Compression spring		261952	1	CK 28 walnut console compl.
143	237498	1	Rotary bearing		261953	1	CK 28 agate-black console compl.
144	210145	2	Lock washer 2.3		261954	1	CK 28 agate-brown
148	210511	3	Machine screw \quad AM 4×4		227986	1	CH 6 Cover compl.
149	244476	1	Motor mechanic		260515	1	Operating Instructions
150	242233	1	Upholder		261756	1	Operating Instructions UAP
151 152	210511 244477	1	Machine screw Motor electronic compl.		260359	1	Shipping carton CS
							Motorelectronic
157	260421	1	Glim lamp	$C \quad 1$	220766	4	Elyt $47 \mu \mathrm{~F} / 25 \mathrm{~V}$
158	249022	1	Glim plate	C 2	224597	1	Elyt $220 \mu \mathrm{~F} / 6 \mathrm{~V}$.
159	263336	1	Stroboscope housing	C 3	216410	3	Elyt $470 \quad \mu \mathrm{~F} / 35 \mathrm{~V}$
160	210469	2	Machine screw AM 3×3	C 4	216410	3	Etyt 470 nF/ $35 \mathrm{~V} / 10 \%$
161	242763	1	Shut-off lever	C 5	227963	1	Ceramic $\quad 10 \mathrm{nF} / 30 \mathrm{~V} / 20 \%$
162	209357	1	Ball	C 6	227390	2	Ceramic $11 \mathrm{nF} / 63 \mathrm{~V} / 20 \%$
163	232104	1	Ball bearing	C 7	227390	2	Ceramic $10 \mathrm{nF} / 63 \mathrm{~V} / 20 \%$
164	210472	1	Machine screw \quad AM 3×4	C 8	202499	1	Foli $\quad 0.22 \mu \mathrm{~F} / 100 \mathrm{~V} / 5 \%$
165	243706	1	Ball spring	C $\quad 9$	222760	1	Ceramic $\quad 20 \mathrm{nF} / 50 \mathrm{~V}$
166	242771	1	Rotary plate	C 10	216410	3	Elyt $470 \mathrm{nF} / 35 \mathrm{~V} / 10 \%$
167	210146	8	Lock washer 3.2	C 11	235573	1	Elyt $10 \mu \mathrm{~F} / 16 \mathrm{~V}$
168	223777	1	Control stud	C 12	242314	1	Elyt $\quad 0.68 \mu \mathrm{~F} / 35 \mathrm{~V}$
170	210362	2	Hex nut	C 13	220766	4	Elyt $47 \mu \mathrm{~F} / 25 \mathrm{~V}$
171	201187	1	Washer	C 14	226459	1	Foil $0.1 \mu \mathrm{~F} / 100 \mathrm{~V} / \mathrm{5} \%$
172	210145	3	Lock washer	D 1	227360	1	ZPD 7.5
173	242615	1	Bearing	D 2	223906	1	1 N 4148
174	203475 242792	1	Sunk screw $\quad \mathrm{M} 3 \times 8$	R 1	224603	3	$1 \mathrm{M} \Omega / 0.25 \mathrm{~W} / 5 \%$
175	242792 242751	1	Tension spring	R 2	211202	4	$10 \mathrm{k} \Omega / 0.25 \mathrm{~W} / 5 \%$
177	242748	1	Plate	R 3	224735	1	$68 \mathrm{k} \Omega / 0.25 \mathrm{~W} / 5 \%$
178	210472	1	Machine screw \quad AM 3×4	$\begin{array}{ll}R & 4 \\ R & 5\end{array}$	239387	1	$22 \mathrm{k} \Omega / 0.25 \mathrm{~W} / 5 \%$
179	239444	1	Tension spring	$\begin{array}{ll}R & 5 \\ R & \end{array}$	224603	3	$1 \mathrm{M} \Omega / 0.25 \mathrm{~W} / 5 \%$
180	242775	1	Changeover lever	$\begin{array}{ll}R \\ R & 6 \\ R & 7\end{array}$	241342	1	$82 \mathrm{k} \Omega / 0.25 \mathrm{~W} / 5 \%$
181	210146	8	Lock washer 3.2		242307	1	Potentiometer $\quad 47 \mathrm{k} \Omega / 0.125 \mathrm{~W} / 5 \%$
182	242789	1	Bearing	$\begin{array}{ll}\text { R } & 8 \\ R & 9\end{array}$	243616	1	Potentiometer $\quad 10 \mathrm{k} \Omega$
183	246042	1	Main lever compl.	$\begin{array}{lr}R & 9 \\ R & 10\end{array}$	243617	1	Potentiometer $22 \mathrm{k} \Omega / \mathrm{lin}$.
184	210147	4	Lock washer 4	$\begin{array}{ll}R \\ R & 10 \\ R & 11\end{array}$	245531	1	$24 \mathrm{k} \Omega$
185	237382	1	Switch angle	$\begin{array}{ll}\text { R } & 11 \\ \mathrm{R} & 12\end{array}$	227384	1	$110 \mathrm{k} \Omega / 0.25 \mathrm{~W} / 5 \%$
186	237383	1	Spring	$\begin{array}{ll}\mathrm{R} & 12\end{array}$	228265	1	270 k $/ 0 / 0.25 \mathrm{~W} / 5 \%$
187	210549	1	Washer 2.1/5/0.5	$\begin{array}{ll}\text { R } \\ \mathrm{R} & 13 \\ \mathrm{R} & 14\end{array}$	239395	1	$15 \mathrm{k} \Omega / 0.25 \mathrm{~W} / 5 \%$
188	210353	1	Hex nut BM 2	$\begin{array}{ll}\text { R } \\ \mathrm{R} & 14\end{array}$	224590	1	$220 \mathrm{k} \Omega / 0.25 \mathrm{~W} / 5 \%$
189	242774	1	Switch slide	$\begin{array}{ll}R \\ R & 15 \\ R\end{array}$	211202	4	$10 \mathrm{k} \Omega / 0.25 \mathrm{~W} / 5 \%$
190	247509	1	Lever compl,	$\begin{array}{ll}\text { R } & 16 \\ \text { R } & 17\end{array}$	217868 239367	1	$560 \Omega / 0.3$ W/5\%
191	237543	1	Rubber sleeve		239367 242311	1	$47 \mathrm{k} \Omega / 0.25 \mathrm{~W} / 5 \%$
192	242742	1	Curve		242311	1	$2 \Omega / 25 \quad W / 5 \%$
193	210353	1	Hexnut BM 2	T 1	229511	2	BC 172 B
				T 2	229511	2	BC 172 B
200	216844	1	Control stud	T 3	244715	1	BC 238 C
201	210143	2	Lock washer 1.5		242306	1	(NSD 102) BD 415
202	218318	1	Adjusting sleeve	IC 1	242303	1	NS 4069
203	210143	2	Lock washer 1.5	IC 2	242304	1	NS 555

Fig. 19 Exploded view 1

Fig. 20 Exploded view 2

Lubricating instructions

All bearing and friction points of the unit are adequately lubricated at the factory. Replenishment of oil and grease is only necessary after approx. 2 years of normal use as the most important bearing points have sintered metal bushes. The motor bearings have long-life sintered metal bushings and thus should not be lubricated. Bearing points and friction faces should be lubricated sparingly rather than generously. When using different lubricants, chemical decomposition can often take place. To prevent lubrication failure, we recommend using the original lubricants shown below.

Fig. 21

Fig. 22

