

Technical Data

Measured values
Current
Line voltage
Drive
Power input
Power consumption
Time from start to rated speed
Platter
Platter speed
Pitch control
Speed control (monitoring)
Sensitivity of the illuminated strobe
(for 0.1% speed deviation)
Total wow and flutter
(according to DIN 45 507)
Rumble
(according to DIN 45 500)
Tonearm
Effective length of tonearm
Offset angle
Tangential tracking error
Tonearm bearing friction
(related to stylus tip)
Stylus pressure

Cartridges

Weight
typical values, Rumble and wow and flutter values obtained with test record.
AC 50 to 60 Hz .
110 to $125 \mathrm{~V}, 220$ to 240 V
electronically-controlled direct-drive system, Dual EDS 500
Motor at playing operation, approximately 2 watts $<50 \mathrm{~mW}$
220 V .50 Hz : at start 35 mA at play 15 mA
110 V 60 Hz : at start 65 mA at play approximately 25 mA
$2-2.5 \mathrm{~s}$ at $331 / 3 \mathrm{rpm}$
non-magnetic, $1.4 \mathrm{~kg}, 304 \mathrm{~mm}$ diameter
$331 / 3$ and 45 rpm , electronically adjustable
Separate for both speeds, each adjustable by means of variable resistor,
range of regulation: 10%
with illuminated stroboscope for platter speeds $331 / 3$ and $45 \mathrm{rpm}, 50$ or 60 Hz .
6 division markings per minute at 50 Hz ,
7.2 division markings per minute at 60 Hz .
(German Industry Standard) $\pm 0.05 \%$
WRMS $\pm 0.03 \%$
Unweighted: $\quad 50 \mathrm{~dB}$
Weighted: $\quad 75 \mathrm{~dB}$
Torsionally rigid tubular aluminum tonearm in low-friction four-point gimbal suspension.
221 mm
2404^{\prime}
$0.160 / \mathrm{cm}$
$\begin{array}{lll}\text { vertical } & 0.07 \mathrm{mN} \quad(0.007 \mathrm{~g})\end{array}$
horizontal $\quad 0.15 \mathrm{mN} \quad(0.015 \mathrm{~g})$
from 0 to $30 \mathrm{mN}(0$ to 3 g$)$ infinitely variable with $1 \mathrm{mN}-(1 / 10 \mathrm{~g})$ calibrations from 0 to $15 \mathrm{mN}(0$ to 1.5 g$)$ operable from $2.5 \mathrm{mN}(0.25 \mathrm{~g})$ stylus pressure upwards. with $1 / 2$ inch screw-type attachment. These can be fitted with the special accessories no. 262186 which can be obteined from trade dealers.
ca. $7,4 \mathrm{~kg}$

Contents

Page	
1	Technical data
2	Audio connection diagram
3/4	Wiring diagram
5/6	Printed-Circuit-Boards, Funktions-Description
7	Dual EDS 500 electronic direct drive system
7	Replacement of motor electronic
7	Replacement of motor mechanic
7	Adjustment of nominal speeds
7	Setting 78 rpm nominal speed
7	Stroboscope
7	Pitch control
8	Tonearm and tonearm suspension
8	Removal of tonearm or the spring housing
8	Removal of tonearm compl. with tonearm suspension
8	Adjustment of tonearm suspension
9	Fitting 1/2 inch pick-up
9	Antiskating control
9	Cue control
9	Replacement of cue control assembly
9	Muting Switch
10	Tonearm Control
10	Start
10	Manuel Start
10	Continuous Play
10	Stopping
10	Shutt-off Mechanism
11	Adjustment Points: Tonearm set Down Point
11	Shut off Point
11	Tonearm vertical lift
11	Solenoid "Start/Stop"
12	Solenoid "Lift"
12	Tonearm does not set down
12	Vertikal Tonearm lift
12	Platter does not start
12-15	Replacement with exploded views
16	Lubrication

Fig. 1 Audio Connection Diagram

Kontaktplatte Contact plate Plaque de contacts	rechter Kanal right channel Canal droit	Kurzschließer Muting switch Court-circuiteur
	rot/red / rouge	
	grün / green / vert	
	schwarz / black / negro	I
	blau / blue / bleu /	
	weiß / white / blanc	
	linker Kanal left channel Canal gauche	

Fig. 2 Wiring Diagram

Fig. 3 Current supply (equipment side)
Fig. 4 Microc

Fig. 6 Motor electronic (equipment side)

e microcomputer boards have been fitted into h serial numbers up to 16000 . If servicing is the microcomputer board COP 420 Art.-No. or these units.

Fig. 7 Silent circuit (equipment side)

Fig. 8 Solenoid Connection plate (equipment side)

Fig. 5 Fuse plate (equipment side)

CS 650 RC Discription of Functions

The automatic HiFi record player CS 650 RC is a remote controllable turntable with front controls.
The power is supplied by means of a mains transformer and a power supply board. The turntable is switched to "stand-by" mode by operating the "power" switch.
D 900 and C 9402 on the power supply board provide a DC voltage of 30 V for the infrared receiver.

The 21 V DC voltage is generated by means of the diodes D 94019402 and C 9403. The direct drive motor, the stand-by LED, the selenoids, the stroboscope LEDs and IC 9400 are supplied with this voltage. The IC operating voltage of 5 V is stabilized by means of IC 9400. In addition to the voltage supplies, the solenoid driver transistors T 9400-T 9405 are accommodated on the power supply board.

The microcomputer board is linked to the power supply board by means of a connector strip.
Operation of the touch buttons for the functions "start, lift and stop" acts upon the inputs of the microprocessor. Via resistors, these three inputs become active " H ". The corresponding input is set to " L " by operating a button. The microprocessor sets the corresponding output to " H ".

The transistors T 9400, 9401 and 9402 are blocked via the inverter, the transistor T 9403, 9404 or 9405 becomes conductive and the command is executed by means of the solenoid.
The infrared signal is fed in via the capacitor C 9305. The operating voltage for the infrared receiver is stabilized to 18 V with the Zener diode D 9302.

The active duration of the commands start, lift and stop is fixed in the microprocessor and amounts to approximately 1.3 sec . During this time, the "muting" output of the processor receives active "L"; via the inverter, signal "H" reaches the base of T 9151 which activates the relay and thus shorts the two audio channels. The stand-by LED is activated via the resistor R 9408.

If the motor is switched on, signal " H " reaches the base of transistor T 9408, via R 9419 and R 9420, which becomes conductive and which switches off the LED. The same signal reaches the microprocessor via the voltage divider R 9421 and R 9422. This signal controls the microprocessor in such a way that the "stop" function is only performed when the motor is running.

Direct Drive System Dual EDS 500

For repair of the Dual EDS 500 special tools and measuring means are required. Work on the motor or motor electronics system should, therefore, only be carried out by an authorized Dual service station.

Replacement of motor electronics

1. Extract unit plug from power line. Lift off platter 4. Loosen connection en solenoid plate 151. Clamp unit in repair jig. Bring unit into head position.
2. Unsolder connection for operating voltage on solenoid plate 151. Unsolder connecting leads on speed control 157, turn switch 6 and generator. Open twists of holding angle 142 with flat pliers.
3. Pull off motor electronics 143 system from motor 141 carefully.
4. Fix replacement motor electronics.

Solder connecting cables (see connection diagram Fig. 10).
5. With the unit in normal position connect it to power line. Switch on unit and check power consumption on operation:
$220 \mathrm{~V} / 50 \mathrm{~Hz}$ approx. 15 mA $110 \mathrm{~V} / 60 \mathrm{~Hz}$ approx. 25 mA
Check nominal speeds. If necessary, readjust as described below
6. Bring unit in the base $\mathbf{9 0}$.

Replacement of motor mechanic

1. See obore. Clamp unit in repair jig.
2. Unsolder connecting leads to motor and the generator. Open twists of holding angle 142 with flat pliers. Lift off motor electronic 143. Remove machine screw and holding angle 142.

3. Loosen threaded pins 8 and remove platter cone 7. Remove the three screws 140. Lift off motor mechanics 141.
4. Put platter cone $\mathbf{7}$ on new motor mechanics and fix it. Fix new motor mechanics with the three screws 140. Fix holding angle 142 with screws. Insert motor electronics 141 and twist holding pieces.
Solder on resp. plug connecting leads (Fig. 10).
5. With the unit in normal position connect it to the power line Switch on unit and check power consumption when operating:
$220 \mathrm{~V} / 50 \mathrm{~Hz}$ approx. 15 mA
$110 \mathrm{~V} / 60 \mathrm{~Hz}$ approx. 25 mA
Check nominal speeds. If necessary, readjust as described below.
6. Bring unit in the base 90 .

Setting nominal speeds

With knob 10 bring the fine speed control 157/R 19 into center position. With controls R 8 and R 9 on the motor electronic system adjust nominal speeds. Control R 8 is used for $331 / 3 \mathrm{rpm}$, R 9 for 45 rpm . Check with strobe disk.

Changeover to 78 rpm nominal speed

Instead of 45 rpm the can be changed to a nominal speed of 78 rpm.
To change the speed bring the fine speed control 157/R 19 in center position using knob 10. Using control R 9 on the motor electronics board 143 adjust for 78 rpm . Check with strobe disk.

Stroboscope

Accurate setting of the platter speeds $331 / 3$ and 45 rpm can be checked during play with the aid of the stroboscope.
When the platter 4 is rotating at exactly $331 / 3$ or 45 rpm the lines of the stroboscope appear to stand still. If the lines move in the direction of rotation of the platter, the platter speed is too high. If the lines move backwards, the platter is rotating more slowly than the nominal speed. Adjustment of platter speeds $331 / 3$ and 45 rpm can make with the "pitch" control 10. Strobe markings are provided on the outer edge of the platter for 50 and 60 Hz line frequencies.

To replace LED 154 remove machine screws 156 and remove strobe cover 153.

It can happen that the stroboscope lines appear to move slightly although the exact speed setting with stroboscope stationary has not been altered. This apparent contradiction is explained by the fact that the electronic central drive motor operates fully independently of line frequency whilst the only relatively accurate line frequency of the AC current supply is used for speed measurement with the light stroboscope. The constantly detectable fluctuations of line frequency by $\pm 0.2 \%$ according to the information of the electricity supply companies brief frequency fluctuations up to 1% are possible - only effect the stroboscope indication and can cause the lines to "wander" although the platter speed is as constant and absolutely accurate as before.

Pitch Control

Each of the two standard speeds $331 / 3$ and $45 \mathrm{rpm}(78 \mathrm{rpm})$ can be varied by about 10%. The variable speed control 157/R 19 located in the voltage divider is adjusted by turning the pitch control knob 10. By this the differential amplifier is altered and the motor speed accordingly.

Tonearm and Tonearm Suspension

The feather-light, extremely torsion resistant all-metal tonearm is suspended in a gimbal. Suspension is by means of 4 hardened and precision polished steel points which rest in precision ball bearings. Tonearm bearing friction is thus reduced to a minimum.

$$
\begin{array}{lll}
\text { Bearing friction vertical } & 0.07 \mathrm{mN} & (0.007 \mathrm{p}) \\
\text { Bearing friction horizontal } & 0.15 \mathrm{mN} & (0.015 \mathrm{p})
\end{array}
$$

as related to stylus point.
As a result, it ensures most favourable pick-up conditions. Before adjusting the tracking force to suit the built-in pick-up cartridge the tonearm is balanced with the scale set to zero. Coarse adjustment is carried out by moving the weight with the stem 40, the subsequent fine adjustment by turning the weight.

The tracking force is adjusted by turning the graduated rotary knob 64 incorporating a coil spring. The scale has markings for a range of adjustment from 0 to $30 \mathrm{mN}(0$ to 3 p$)$ which permit accurate adjustment of the tracking force. One graduation in the range of $2-15 \mathrm{mN}(0.2-1.5 \mathrm{p})$ corresponds to $1 \mathrm{mN}(0.1 \mathrm{p})$ in the range of $15-30 \mathrm{mN}(1.5-3 p)$ to $2.5 \mathrm{mN}(0.25 \mathrm{p})$.

To remove the tonearm or the spring housing

1. Secure the unit in a repair stand. Turn the rotary turn switch 64 to the zero position. Lock the tonearm 73. Remove the counterweight 40.
2. Turn the unit over. Remove the screening sheet 217 and solder off the tonearm connections at the short circuiter 211. Turn the unit the right way up.
3. Remove the fillister head screw 66. Remove the rotary turn switch 64 and the washer 65.
4. Loosen the nut 44 and the grub screw 45 . Draw the tonearm 73 complete with bearing 70 from the bearing race 46 . The spring housing 69 or the tonearm 73 may now be changed.
Reassembly involves the reverse procedure.

Fig. 12

Adjusting the tonearm bearing

First balance tonearm exactly. Both bearings must have slight, just perceptible play. The horizontal tonearm bearing is correctly adjusted when at anti-skating settings " 0.5 " and being touched it slides in without resistance. The vertical tonearm bearing is correctly adjusted when it swings in after being touched. The play of the horizontal tonearm bearing should be adjusted with threaded pin 42 and that of the vertical tonearm bearing with threaded pin 45.

Fig. 13

Fitting a $1 / 2$ inch cartridge

If a cartridge with $1 / 2$ inch standard mount is to be fitted, the conversion kit 39 Number 262186 is necessary. The proper method of fitting is shown in fig. 13.
Also the decorative cover should be removed from the counterweight 40 and should be fitted with the compensatory weight to be found in the conversion kit 39.
Any alteration can only be carried out with the aid of a Dual-Skate-0-Meter and a test record and should only be done by an authorized service station.

Anti skating Device

To compensate for skating force use the knurled ring 76, The asymmetric cam plate displaces the skating lever 183 from the tonearm pivoting point. The anti-skating force is transmitted to the segment 185 and to the tonearm 73 by tension spring 187. Optimum adjustment is carried out at the factorys for styli having a tip radius of $15 \mu \mathrm{~m}$ (conical), $5 / 6$ and $18 / 22 \mu \mathrm{~m}$ (elliptical).
Any alteration can only be carried out with the aid of a Dual. Skate-0-Meter and a test record and should only be done by an authorized service station.

Cue Control

By moving the lever 203 forward (V) lift cam 204 rotates. The slide bar 190 transmits the lifting movement to the lift pin, that raises the tonearm. As a result, the cue control permits raise up the tonearm at any desired point.
The lever is released by moving the cue control lever rear wards (I). As a result of the action of compression spring 181 the lift pin is brought back to its normal position and the tonearm loweres slowly Lowering of the tonearm is damped by silicone oil in the lift tube.
The lift can be varied by turning the sleeve 60 . The distance between the record and the needle should be 5.7 mm .

Replacement of Cue Control Plate

Replace cue control plate 163 as follows:

1. Clamp unit in the repair jig. and lock tonearm. Turn unit in head position.
2. Remove safety washer 179. Lift off main lever 178 and bearing support 177.
3. Remove safety washer 191. Lift off positioning bar 190 and rotary bearing 189 and turn towards motor 141.
4. Remove both machine screws 195, remove lift plate compl. 163.

For installation proceed in the reverse order.

Muting Switch

To prevent disturbing noises during automatic operation of the tonearm the unit is fitted with a muting switch. Control of the switch springs for both channels is effected by the camwheel. With the unit in neutral state the short circuit of the pick-up leads is eliminated.

Adjustment

In zero position of the cam there should be a clearance of approximately 0.5 mm between the contacts of the muting switch. This clearance should be adjusted by bending the muting switch contacts. The contacts should be sprayed with a suitable cleaning agent.

Tonearm Control

Automatic movement of the tonearm is initiated by the control cams on the inside of the cam wheel 5 on rotating through 360°. The control elements for raising and lowering are the main lever 178 and lifting bolt for horizontal movement the main lever 178 with segment 185.
The automatic tonearm set down mechanism is designed for 30 cm and 17 cm records and is coupled to the platter speed changeover. The setdown points of the tonearm are determined by the spring pin of segment 185 contacting the slide bar 190. Limitation of the horizontal movement of the tonearm is produced by the pin of segment contacting the stop attached to the slide bar 190. Only during set-down does main lever 178 lift the slide bar 190 and the stop attached to it which, as a result, moves into the swivel range of the stop pin fitted on the segment. After completion of set down (lowering of the tonearm onto the record) slide bar is released again and returns to its neutral position. As a result, the slide bar moves out of the swivel range of the pin, so that unimpeded movement of the tonearm is possible for playing.

Start

Switching the switch lever 68 into the "start" position initiates the following sequence:
a) The Solenoid rotates the switch lever 147 which is pivoted about the notched stud. At the same time, the switch arm 53 is moved the motor 141, via the switch 49, and the platter starts turning.
b) Operating the switch lever 58 also releases the start slide which is drawn toward the cam by means of the tension spring 57 By that the shut-off lever engage with the drive pinion and the cam turns.

Manual start

The latch 165 which is connected to the switch arm 53 engages in the four-sided plate when the tonearm is moved manually. The switch arm connects the mains supply to the motor 141 via the power switch 125 and the platter rotates.
When the run-out groove of the record is reached, the tonearm is lifted and returned, the motor is switched off automatically. If the tonearm is lifted off the record before the run-out, and returned by hand to the pillar, then the boit on the segment 185 engages the latch 165 so that the switch arm is returned to its starting position. This switches off the mains supply.

Continuous Play

Continuous Play is switched on by turning the rotary knob 74 to " ∞ ". The rotary knob 74 turns the switch angle 220. The switch rod 219 keep the change lever 147 in starting position.
After the record has been played the tonearm returns automatically to the lead-in groove of the record. This procedure is repeated until the switch lever is brought to the "stop" position or the rotary knob 74 to position " 1 ".

Adjustment Point

Pull mains plug. Remove platter 4. Bring rotary knob 74 to position " ∞ ". Turn cam wheel to central position. The change lever 147 turns the guide lever U and the top of the guide lever must at least be brought to the cam range. Adjust by bending the switch rod 223.

Stopping

When control lever is set to "stop position the start slide 58 which is pulled towards the cam by means of tension 57, becomes free. As a result, the shut-off lever is moved into the range of dogs cam. The lever remains in its stop position.

Fig. 16

Fig. 17

Shut-off

The shut-off and stop functions depend on the position of the guide lever \mathbf{U}. The guide lever \mathbf{U} is brought to stop position by the main lever 178 after every start (longer end of the guide lever towards cam wheel centre).
The shut-off bar 171 is guided along in proportion to the movement of the segment 185.
The shut-off procedure is imitated after a record has been played by the $\operatorname{dog} \mathbf{M}$ of the platter and the shut-off lever \mathbf{A}

Fig. 18

Fig. 19

Fig. 20

Fig. 21

The shut-off lever \mathbf{A} is moved towards the $\operatorname{dog} \mathbf{M}$ of the platter within the shut-off range (record diameter 116 mm to 122 mm), The dog engages the shut-off lever \mathbf{A}. The cam wheel $\mathbf{5}$ is moved from 0 position and engage with the drive pinion of the platter. The main lever 178 guides the tonearm back and effected the tonearm to return to its rest position. During the running in of the cam wheel into 0 position the roll 55 of the switch arm can run into the cut-out provided at the cam wheel and achate the power switch 125 .

Adjustment Points

Tonearm set-down point

The set-down point can be varied with the eccentric bolt 192. If the stylus sets down onto the record too far inside or outside turn eccentric bolt 192 in left or right direction.

Shut-off Point

The shut-off point (shut-off area of record diameter (116/122 mm) can be varied with the eccentric \mathbf{E} mounted on the segment 185.

Tonearm lifting height

a) Remove the mains plug. Guide the tonearm 73 towards the edge of the platter. The bottom edge of the cartridge housing should be parallel to the top edge of the platter cover. Carry out alignment by turning the adjusting sleeve 164.
b) Press the start button and turn the platter $\mathbf{4}$ in normal direction until the tonearm 73 reaches its highest position. The tonearm should now have a vertical play of approximatelly 1 2 mm (measured at the tonearm post). If necessary, slightly turn the adjusting sleeve 164.

Pull magnet "start/stop"

The stroke of the pull magnets can be altered with eccentric $\mathbf{E}_{\mathbf{1}}$. The stroke should be set so that during "start" operation a play of minimum 0.1 mm is present between the lap of the deflection lever 147 and the start slide 58.

Fig. 22

Fig. 23

Defect
Tonearm does not set down on record or lowers too quickly when operating the cue control lever 203

Vertical tonearm movement shows resistance

Cause

Excessive or insuffidient damping as a result of contamination of the silicone oil in the lift tube

Excessive friction of Lift Pin in guide tube tube

Nominal speed

is maladjusted.

Pull magnet "lift"

The stroke of the pull magnets can be altered with eccentric $\mathbf{E}_{\mathbf{2}}$. During operation of the pull magnet up to stop the lever 203 should still just evidence perceptable play (min .0 .1 mm).

Remedy

Remove cue control plate 163. Remove shaft pin 180 and washer 200. Remove adjustment bush sleeve 164. Remove washer 200. Remove lift pin 181 and compression spring. Clean lift tube and lift pin. Smear lift pin evenly with "Wacker Silicon Oil AK $300000^{\prime \prime}$. Reassemble components.

See obove, if necessary change the cue control plate 163.

Readjust nominal speed, described on page 7 .

Speed lies at limit of the range of adjustment of the pitch control

Replacement parts

Pos.	Part.No.	Qty	Description
1	220213	1	Centering piece
2	214056	1	Washer
3	263976	1	Platter mat cpl.
4	263978	1	Platter cpl. with mat
4	262693	1	Rocker cpl.
5	246035	1	Cam weel cpl.
6	238034	1	Rotary switch
7	242192	1	Platter cone
8	242191	3	Threaded pin M 3×3
9	262634	1	Washer 8.2/15/0.6
10	260336	1	Rotary knob "pitch"
11	260335	1	Rotary knob
12	263257	1	Pitch control cover cpl .
13	200444	7	Spring washer
14	263979	1	Mounting plate cpl.
15	236843	2	Hinge cpl.
16	234838	2	Adjusting wheel
17	210286	2	Cheese head self-tapping screw B 2.9×9.5
18	231767	2	Retainer plate
19	210146	2	Securing disc
20	210668	1	Washer
21	231654	1	Hinge pin
22	234145	2	Compression spring
23	231657	1	Hinge tongue
24	231656	2	Hinge cam
25	236092	1	Washer
26	234837	1	Adjusting nut
27	247719	1	Fuse plate cpl.
	209719	1	Fuse \quad T0.125 A/250 V (230 V)
	209697	1	Fuse \quad T0.25 A/250 V (115 V)
28	263980	1	Power transformer
29	246079	1	Mounting plate cpl.
30	207301	1	TA-cable cpl. with Cynch plug
31	209425	1	Cynch plug white
32	209426	1	Cynch plug black
33	243750	1	Power cable Europe
	232995	1	Power cable USA
35	237548	2	Cable conduit
36	263982	1	Current supply plate cpl.
9400	260212	2	Female multipoint connector 2pole
9401	260213	1	Female multipoint connector 4pole

Pos.	Part. No.	Oty	Description
9402	263369	2	Female multipoint connector 8pole
D 9400	227344	5	1 N 4001
D 9401	227344	5	1 N 4001
D 9402	227344	5	1 N 4001
D 9403	227344	5	1 N 4001
D 9404	227344	5	1 N 4001
D 9505	227360	1	ZPD 7.5
T 9400	224726	5	BC 337
T 9401	224726	5	BC 337
T 9402	224726	5	BC 337
T 9403	262367	3	BD 371 A-25
T 9404	262367	3	BD 371 A-25
T 9405	262367	3	BD 372 A- 25
T 9406	235921	1	BC 239 C
T 9407	224726	5	BC 337
T 9408	224726	5	BC 337
IC 9400	261333	1	LM 340 T 5
37	243477	1	\|R-Connection plate cpl.
38	263984	1	Micro computer board cpl.
39	262186	1	1/2 inch conversion kit G
40	263263	1	Weight cpl.
41	249383	1	Conter nut
42	230063	1	Threaded pin
43	263260	1	Frame cpl.
44	246884	1	Counter nut
45	234634	1	Threaded pin
46	263329	1	Bearing frame
47	242677	1	Machine screw
48	210485	1	Machine screw
49	242862	1	Micro switch
50	210361	1	Hex nut
51	242768	1	Bush
52	261744	1	Tension spring
53	242765	1	Switch arm
54	210147	1	Lock washer
55	242785	1	Roll
56	210146	2	Lock washer
57	233710	1	Tension spring

Lubricating instructions

All bearing and friction points of the unit are adequately lubricated at the factory. Replenishment of oil and grease is only necessary after approx. 2 years of normal use as the most important bearing points have sintered metal bushes. The motor bearings have long-life sintered metal bushings and thus should not be lubricated. Bearing points and friction faces should be lubricated sparingly rather than generously. When using different lubricants, chemical decomposition can often take place. To prevent lubrication failure, we recommend using the original lubricants shown below.

BP super viscostatic 10 W/40

Fig. 27

